7,353 research outputs found

    Lattice study on ηc2\eta_{c2} and X(3872)

    Full text link
    Properties of 2−+2^{-+} charmonium ηc2\eta_{c2} are investigated in quenched lattice QCD. The mass of ηc2\eta_{c2} is determined to be 3.80(3) GeV, which is close to the mass of DD-wave charmonium ψ(3770)\psi(3770) and in agreement with quark model predictions. The transition width of ηc2→γJ/ψ\eta_{c2}\to \gamma J/\psi is also obtained with a value Γ=3.8(9)\Gamma=3.8(9) keV. Since the possible 2−+2^{-+} assignment to X(3872) has not been ruled out by experiments, our results help to clarify the nature of X(3872).Comment: 15 pages, 8 figures. typos, grammatical errors and some references corrected, redundant discussions deleted, conclusion does not change. published versio

    High functional coherence in k-partite protein cliques of protein interaction networks

    Full text link
    We introduce a new topological concept called k-partite protein cliques to study protein interaction (PPI) networks. In particular, we examine functional coherence of proteins in k-partite protein cliques. A k-partite protein clique is a k-partite maximal clique comprising two or more nonoverlapping protein subsets between any two of which full interactions are exhibited. In the detection of PPI&rsquo;s k-partite maximal cliques, we propose to transform PPI networks into induced K-partite graphs with proteins as vertices where edges only exist among the graph&rsquo;s partites. Then, we present a k-partite maximal clique mining (MaCMik) algorithm to enumerate k-partite maximal cliques from K-partite graphs. Our MaCMik algorithm is applied to a yeast PPI network. We observe that there does exist interesting and unusually high functional coherence in k-partite protein cliques&mdash;most proteins in k-partite protein cliques, especially those in the same partites, share the same functions. Therefore, the idea of k-partite protein cliques suggests a novel approach to characterizing PPI networks, and may help function prediction for unknown proteins.<br /
    • …
    corecore