51 research outputs found

    Waste Heat Recovery from Diesel Engine Exhaust Using a Single-Screw Expander Organic Rankine Cycle System: Experimental Investigation of Exergy Destruction

    Get PDF
    The organic Rankine cycle is a mature small-scale power generation technology for harnessing low- to mid-temperature heat sources. However, the low efficiency of the cycle still hinders its widespread implementation. To optimize the cycle’s performance, it is crucial to identify the source and magnitude of losses within each component of the cycle. This study, thus, aims to investigate the irreversible losses and their effect on the performance of the system. A prototype organic Rankine cycle (ORC) with the exhaust of a diesel engine as the heat source was developed to experimentally investigate the system and ascertain the losses. The experiments were performed at steady-state conditions at different evaporation pressures from 1300 kPa to 1600 kPa. The exergy loss and exergetic efficiency of the individual component and the overall system was estimated from the experimentally measurement of the pressure, temperature, and mass flow rate. The results indicate that the exergy losses of the evaporator are almost 60 kW at different evaporation pressures and the exergy loss rate is from 69.1% to 65.1%, which accounted for most of the total exergy loss rate in the organic Rankine cycle system. Meanwhile, the highest shaft efficiency and exergetic efficiency of the screw expander are 49.8% and 38.4%, respectively, and the exergy losses and exergy loss rate of the pump and pipe are less than 0.5 kW and 1%. Due to the relatively higher exergy loss of the evaporator and the low efficiency of expander, the highest exergetic efficiency of the organic Rankine cycle system is about 10.8%. The study concludes that the maximum improvement potential lies in the evaporator, followed by the expander

    Surface warming-induced global acceleration of upper ocean currents

    Get PDF
    © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Peng, Q., Xie, S.-P., Wang, D., Huang, R. X., Chen, G., Shu, Y., Shi, J.-R., & Liu, W. Surface warming-induced global acceleration of upper ocean currents. Science Advances, 8(16), (2022): eabj8394, https://doi.org/10.1126/sciadv.abj8394.How the ocean circulation changes in a warming climate is an important but poorly understood problem. Using a global ocean model, we decompose the problem into distinct responses to changes in sea surface temperature, salinity, and wind. Our results show that the surface warming effect, a robust feature of anthropogenic climate change, dominates and accelerates the upper ocean currents in 77% of the global ocean. Specifically, the increased vertical stratification intensifies the upper subtropical gyres and equatorial currents by shoaling these systems, while the differential warming between the Southern Ocean upwelling zone and the region to the north accelerates surface zonal currents in the Southern Ocean. In comparison, the wind stress and surface salinity changes affect regional current systems. Our study points a way forward for investigating ocean circulation change and evaluating the uncertainty.Q.P. is supported by the National Natural Science Foundation of China (42005035), the Science and Technology Planning Project of Guangzhou (202102020935), and the Independent Research Project Program of State Key Laboratory of Tropical Oceanography (LTOZZ2102). D.W. is supported by the National Natural Science Foundation of China (92158204), and the Innovation Group Project of Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) (311020004). S.-P.X. is supported by the National Science Foundation (AGS-1934392). Y.S. is supported by the National Key Research and Development Program of China (2016YFC1401702). G.C. is supported by National Natural Science Foundation of China (41822602). The numerical simulation is supported by the High-Performance Computing Division and HPC managers of W. Zhou and D. Sui in the South China Sea Institute of Oceanology

    Progress of regional oceanography study associated with western boundary current in the South China Sea

    Get PDF
    Recent progress of physical oceanography in the South China Sea (SCS) associated with the western boundary current (WBC) and eddies is reviewed in this paper. It includes Argo observations of the WBC, eddy detection in the WBC based on satellite images, cross-continental shelf exchange in the WBC, eddy-current interaction, interannual variability of the WBC, air-sea interaction, the SCS throughflow (SCSTF), among others. The WBC in the SCS is strong, and its structure, variability and dynamic processes on seasonal and interannual time scales are yet to be fully understood. In this paper, we summarize progresses on the variability of the WBC, eddy-current interaction, air-sea interaction, and the SCSTF achieved in the past few years. Firstly, using the drifting buoy observations, we point out that the WBC becomes stronger and narrower after it reaches the central Vietnam coast. The pos-sible mechanisms influencing the ocean circulation in the northern SCS are discussed, and the dynamic mechanisms that induce the countercurrent in the region of northern branch of WBC in winter are also studied quantitatively using momentum balance. The geostropic component of the WBC was diagnosed using the ship observation along 18°N, and we found that the WBC changed significantly on interannual time scale. Secondly, using the ship observations, two anti-cyclonic eddies in the winter of 2003/2004 in the northern SCS, and three anti-cyclonic eddies in the summer of 2007 along 18°N were studied. The results show that the two anti-cyclonic eddies can propagate southwestward along the continental shelf at the speed of first Rossby wave (~0.1 m s1) in winter, and the interaction between the three anti-cyclonic eddies in summer and the WBC in the SCS is preliminarily revealed. Eddies on the continental shelf of northern SCS propagated southeastward with a maximum speed of 0.09 m s-1, and those to the east of Vietnam coast had the largest kinetic energy, both of which imply strong interaction between eddy activity and WBC in the SCS. Thirdly, strong intraseasonal variability (ISV) of sea surface temperature (SST) near the WBC regions was found, and the ISV signal of SST in winter weakens the ISV signal of latent heat flux by 20%. Fourthly, the long-term change of SCSTF volume transport and its connection with the ocean circulation in the Pacific were discussed

    Molecular epidemiology of measles viruses in China, 1995–2003

    Get PDF
    This report describes the genetic characterization of 297 wild-type measles viruses that were isolated in 24 provinces of China between 1995 and 2003. Phylogenetic analysis of the N gene sequences showed that all of the isolates belonged to genotype H1 except 3 isolates, which were genotype A. The nucleotide sequence and predicted amino acid homologies of the 294-genotype H1 strains were 94.7%–100% and 93.3%–100%, respectively. The genotype H1 isolates were divided into 2 clusters, which differed by approximately 2.9% at the nucleotide level. Viruses from both clusters were distributed throughout China with no apparent geographic restriction and multiple co-circulating lineages were present in many provinces. Even though other measles genotypes have been detected in countries that border China, this report shows that genotype H1 is widely distributed throughout the country and that China has a single, endemic genotype. This important baseline data will help to monitor the progress of measles control in China

    A Case of Annular Elastolytic Giant Cell Granuloma Associated with Syphilis

    Full text link
    Annular elastolytic giant cell granuloma (AEGCG) is a rare granulomatous skin disease characterized by annular patches with slightly raised borders, hypopigmented and/or atrophic centers found mainly on sun-exposed skin. Histologically, it is characterized by phagocytosis of elastic fibers by multinucleated giant cells. The pathogenesis of the disease is unclear. We report a case of 55-year-old man with AEGCG in association with syphilis, whose condition improved when hydroxychloroquine sulfate and topical tacrolimus were administered over a 2-month period
    • …
    corecore