30 research outputs found

    Genome-Wide Identification of the A20/AN1 Zinc Finger Proteon Family Genes in \u3cem\u3eIpomoea batatas\u3c/em\u3e and Its Two Relatives and Function Analysis of \u3cem\u3eIbSAP16\u3c/em\u3e in Salinity Tolerance

    Get PDF
    Stress-associated protein (SAP) genes—encoding A20/AN1 zinc-finger domain-containing proteins—play pivotal roles in regulating stress responses, growth, and development in plants. They are considered suitable candidates to improve abiotic stress tolerance in plants. However, the SAP gene family in sweet potato (Ipomoea batatas) and its relatives is yet to be investigated. In this study, 20 SAPs in sweet potato, and 23 and 26 SAPs in its wild diploid relatives Ipomoea triloba and Ipomoea trifida were identified. The chromosome locations, gene structures, protein physiological properties, conserved domains, and phylogenetic relationships of these SAPs were analyzed systematically. Binding motif analysis of IbSAPs indicated that hormone and stress responsive cis-acting elements were distributed in their promoters. RT-qPCR or RNA-seq data revealed that the expression patterns of IbSAP, ItbSAP, and ItfSAP genes varied in different organs and responded to salinity, drought, or ABA (abscisic acid) treatments differently. Moreover, we found that IbSAP16 driven by the 35 S promoter conferred salinity tolerance in transgenic Arabidopsis. These results provided a genome-wide characterization of SAP genes in sweet potato and its two relatives and suggested that IbSAP16 is involved in salinity stress responses. Our research laid the groundwork for studying SAP-mediated stress response mechanisms in sweet potato

    The characterization of tourmaline and its effects on plant growth

    Get PDF
    The purpose of this study was to investigate the characteristics of ACERALIVEN™, a commercial tourmaline, and to test its effect on plant growth. According to our analysis, ACERALIVEN™ belongs to the Si-Al-Mg tourmaline structure. It contains some trace metals such as zirconium, potassium, and iron and able to emit far-infrared energy in the emissivity of 0.829. Introducing the tourmaline into water changes the water to be more alkaline. Tourmaline also releases negative hydroxyl ions and dissolved oxygen creating what is called as hydrogen water. Mung beans submerged with ACERALIVEN™ shows a longer lifetime than without submerging the tourmaline.  Additionally, the tourmaline can promote plant growth by removing chlorine and releasing far-infrared which is beneficial for plant’s metabolism

    Berry Phase of Two Impurity Qubits as a Signature of Dicke Quantum Phase Transition

    No full text
    In this paper, we investigate the effect of the Dicke quantum phase transition on the Berry phase of the two impurity qubits. The two impurity qubits only have dispersive interactions with the optical field of the Dicke quantum system. Therefore, the two impurity qubits do not affect the ground state energy of the Dicke Hamiltonian. We find that the Berry phase of the two impurity qubits has a sudden change at the Dicke quantum phase transition point. Therefore, the Berry phase of the two impurity qubits can be used as a phase transition signal for the Dicke quantum phase transition. In addition, the two impurity qubits change differently near the phase transition point at different times. We explain the reason for the different variations by studying the variation of the Berry phase of the two impurity qubits with the phase transition parameters and time. Finally, we investigated the variation of the Berry phases of the two impurity qubits with their initial conditions, and we found that their Berry phases also have abrupt changes with the initial conditions. Since the Dicke quantum phase transition is already experimentally executable, the research in this paper helps to provide a means for manipulating the Berry phase of the two impurity qubits

    Berry Phase of Two Impurity Qubits as a Signature of Dicke Quantum Phase Transition

    No full text
    In this paper, we investigate the effect of the Dicke quantum phase transition on the Berry phase of the two impurity qubits. The two impurity qubits only have dispersive interactions with the optical field of the Dicke quantum system. Therefore, the two impurity qubits do not affect the ground state energy of the Dicke Hamiltonian. We find that the Berry phase of the two impurity qubits has a sudden change at the Dicke quantum phase transition point. Therefore, the Berry phase of the two impurity qubits can be used as a phase transition signal for the Dicke quantum phase transition. In addition, the two impurity qubits change differently near the phase transition point at different times. We explain the reason for the different variations by studying the variation of the Berry phase of the two impurity qubits with the phase transition parameters and time. Finally, we investigated the variation of the Berry phases of the two impurity qubits with their initial conditions, and we found that their Berry phases also have abrupt changes with the initial conditions. Since the Dicke quantum phase transition is already experimentally executable, the research in this paper helps to provide a means for manipulating the Berry phase of the two impurity qubits

    Study on Flame Spread Characteristics of Flame-Retardant Cables in Mine

    No full text
    Polymer combustion is an important factor in mine fires. Based on the actual environment in a mine tunnel, a cable combustion experiment platform was established to study the regularities of the cable fire spread speed and smoke temperature under different conditions, including various fire loads and ventilation speeds. The flame change and molten dripping behaviour during the fire spread process were also analyzed. The experimental results show that the flame-retardant cable can be ignited and continuously burnt at a certain wind speed, but the combustion can be restrained at high wind speed. The combustion speed of the flame-retardant cable is affected by the fire load and ventilation speed. The combustion droplets can change the shape of the flame, which can consequently ignite other combustible materials. The analysis of the experimental results provides an important basis for the prevention of tunnel fires

    Quantum Speed-Up Induced by the Quantum Phase Transition in a Nonlinear Dicke Model with Two Impurity Qubits

    No full text
    In this paper, we investigate the effect of the Dicke quantum phase transition on the speed of evolution of the system dynamics. At the phase transition point, the symmetry associated with the system parity operator begins to break down. By comparing the magnitudes of the two types of quantum speed limit times, we find that the quantum speed limit time of the system is described by one of the quantum speed limit times, whether in the normal or superradiant phase. We find that, in the normal phase, the strength of the coupling between the optical field and the atoms has little effect on the dynamical evolution speed of the system. However, in the superradiant phase, a stronger atom–photon coupling strength can accelerate the system dynamics’ evolution. Finally, we investigate the effect of the entanglement of the initial state of the system on the speed of evolution of the system dynamics. We find that in the normal phase, the entanglement of the initial state of the system has almost no effect on the system dynamics’ evolution speed. However, in the superradiant phase, larger entanglement of the system can accelerate the evolution of the system dynamics. Furthermore, we verify the above conclusions by the actual evolution of the system

    Research on Dynamic Monitoring of Grain Filling Process of Winter Wheat from Time-Series Planet Imageries

    No full text
    Remote sensing has been used as an important means of monitoring crop growth, especially for the monitoring of the formation of crop yield in the middle and late growth period. The information acquisition on the yield formation period of winter wheat is of great significance for winter wheat growth monitoring, yield estimation and scientific management. Hence, the main goal of this study was to verify the possibility of monitoring the grain-filling process of winter wheat and its in-field variability using an alternative non-destructive method based on orbital remote sensing. High-resolution satellite imageries (3 m) were obtained from the PlanetScope platform for three commercial winter wheat fields in Jiangsu Province, China during the reproductive stage of the winter wheat (185–215/193–223/194–224 days after sowing (DAS)). Based on the quantitative analysis of vegetation indices (VIs) obtained from high-resolution satellite imageries and three indicators of the winter wheat grain-filling process, linear, polynomial and logistic growth models were used to establish the relationship between VIs and the three indicators. The research showed a high Pearson correlation (p < 0.001) between winter wheat maturity and most VIs. In the overall model, the remote sensing inversion of the dry thousand-grain weight has the highest accuracy and its R2 reaches more than 0.8, which is followed by fresh thousand-grain weight and water content, the accuracies of which are also considerable. The results indicated a great potential to use high-resolution satellite imageries to monitor winter wheat maturity variability in fields and subfields. In addition, the proposed method contributes to monitoring the dynamic spatio-temporality of the grain-filling progression, allowing for more accurate management strategies in regard to winter wheat

    In vivo therapeutic effects of affinity-improved-TCR engineered T-cells on HBV-related hepatocellular carcinoma

    No full text
    Background In patients with hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC), virus-specific cytotoxic T lymphocytes (CTLs) fail to eliminate HCC cells expressing HBV antigens. As the expression of viral antigen in HBV-associated HCC may decrease to allow tumor to escape immune attacks, we hypothesized that an HBV surface antigen (HBsAg)-specific affinity-improved-T-cell receptor (TCR) will enable T cells to target HCC more effectively than corresponding wild-type-TCR. We also postulated that TCR promiscuity can be exploited to efficiently capture HBV variants that can hinder CTL-based therapeutics.Methods We applied flexi-panning to isolate affinity-improved TCRs binding to a variant antigen, the human leukocyte antigen (HLA)-A*02:01-restricted nonapeptide HBs371-379-ILSPFLPLL, from libraries constructed with a TCR cloned using the decapeptide HBs370-379-SIVSPFIPLL. The potency and safety of the affinity-improved-TCR engineered T-cells (Ai-TCR-T) were verified with potentially cross-reactive human and HBV-variant peptides, tumor and normal cells, and xenograft mouse models.Results Ai-TCR-T cells retained cognate HBV antigen specificity and recognized a wide range of HBV genotypic variants with improved sensitivity and cytotoxicity. Cell infusions produced complete elimination of HCC without recurrence in the xenograft mouse models. Elevated accumulation of CD8+ Ai-TCR-T cells in tumors correlated with tumor shrinkage.Conclusion The in vitro and in vivo studies demonstrated that HBsAg-specific Ai-TCR-T cells had safety profiles similar to those of their wild-type counterparts and significantly enhanced potency. This study presents an approach to develop new therapeutic strategies for HBV-related HCC
    corecore