10,687 research outputs found

    Decomposition by Successive Convex Approximation: A Unifying Approach for Linear Transceiver Design in Heterogeneous Networks

    Get PDF
    We study the downlink linear precoder design problem in a multi-cell dense heterogeneous network (HetNet). The problem is formulated as a general sum-utility maximization (SUM) problem, which includes as special cases many practical precoder design problems such as multi-cell coordinated linear precoding, full and partial per-cell coordinated multi-point transmission, zero-forcing precoding and joint BS clustering and beamforming/precoding. The SUM problem is difficult due to its non-convexity and the tight coupling of the users' precoders. In this paper we propose a novel convex approximation technique to approximate the original problem by a series of convex subproblems, each of which decomposes across all the cells. The convexity of the subproblems allows for efficient computation, while their decomposability leads to distributed implementation. {Our approach hinges upon the identification of certain key convexity properties of the sum-utility objective, which allows us to transform the problem into a form that can be solved using a popular algorithmic framework called BSUM (Block Successive Upper-Bound Minimization).} Simulation experiments show that the proposed framework is effective for solving interference management problems in large HetNet.Comment: Accepted by IEEE Transactions on Wireless Communicatio

    Residue cross sections of 50^{50}Ti-induced fusion reactions based on the two-step model

    Full text link
    50^{50}Ti-induced fusion reactions to synthesize superheavy elements are studied systematically with the two-step model developed recently, where fusion process is divided into approaching phase and formation phase. Furthermore, the residue cross sections for different neutron evaporation channels are evaluated with the statistical evaporation model. In general, the calculated cross sections are much smaller than that of 48^{48}Ca-induced fusion reactions, but the results are within the detection capability of experimental facilities nowadays. The maximum calculated residue cross section for producing superheavy element Z=119Z=119 is in the reaction 50^{50}Ti+247^{247}Bk in 3n3n channels with σres(3n)=0.043\sigma_{\rm res}(3n)=0.043 pb at E∗E^{*} = 37.0 MeV.Comment: 6 pages, 7 figure
    • …
    corecore