88 research outputs found

    Empirical study on the legal protection of hydrogen technology industry in Gansu Province

    Get PDF
    Energy is the foundation of national economic development and social stability, which is related to national security and even global climate security. Along with the proposal of the double carbon goal, our country in response to climate change global governance has deeply promoted the new revolution of the energy industry, has carried out a large number of new energy basic development and project construction in Gansu province, as the renewable energy with great potential, hydrogen energy has been much attention. From the perspective of comparative law, this paper explores three dimensions of the development of hydrogen energy science and technology industry in Gansu, namely, the different safety standards, the lack of legal regulation means and the imperfect legal guarantee system, and then puts forward some perfect suggestions on the construction of regional legal policy system, the establishment of safety standard guidelines and the expansion of the scope of energy legal personnel training

    A Decentralized Virtual Machine Migration Approach of Data Centers for Cloud Computing

    Get PDF
    As cloud computing offers services to lots of users worldwide, pervasive applications from customers are hosted by large-scale data centers. Upon such platforms, virtualization technology is employed to multiplex the underlying physical resources. Since the incoming loads of different application vary significantly, it is important and critical to manage the placement and resource allocation schemes of the virtual machines (VMs) in order to guarantee the quality of services. In this paper, we propose a decentralized virtual machine migration approach inside the data centers for cloud computing environments. The system models and power models are defined and described first. Then, we present the key steps of the decentralized mechanism, including the establishment of load vectors, load information collection, VM selection, and destination determination. A two-threshold decentralized migration algorithm is implemented to further save the energy consumption as well as keeping the quality of services. By examining the effect of our approach by performance evaluation experiments, the thresholds and other factors are analyzed and discussed. The results illustrate that the proposed approach can efficiently balance the loads across different physical nodes and also can lead to less power consumption of the entire system holistically

    UV R-CNN: Stable and Efficient Dense Human Pose Estimation

    Full text link
    Dense pose estimation is a dense 3D prediction task for instance-level human analysis, aiming to map human pixels from an RGB image to a 3D surface of the human body. Due to a large amount of surface point regression, the training process appears to be easy to collapse compared to other region-based human instance analyzing tasks. By analyzing the loss formulation of the existing dense pose estimation model, we introduce a novel point regression loss function, named Dense Points} loss to stable the training progress, and a new balanced loss weighting strategy to handle the multi-task losses. With the above novelties, we propose a brand new architecture, named UV R-CNN. Without auxiliary supervision and external knowledge from other tasks, UV R-CNN can handle many complicated issues in dense pose model training progress, achieving 65.0% APgpsAP_{gps} and 66.1% APgpsmAP_{gpsm} on the DensePose-COCO validation subset with ResNet-50-FPN feature extractor, competitive among the state-of-the-art dense human pose estimation methods.Comment: 9pages, 4 figure

    MicroRNA390-Directed TAS3 Cleavage Leads to the Production of tasiRNA-ARF3/4 During Somatic Embryogenesis in Dimocarpus longan Lour

    Get PDF
    Trans-acting short-interfering RNAs (tasiRNAs) originate from TAS3 families through microRNA (miRNA) 390-guided cleavage of primary transcripts and target auxin response factors (ARF3/-4), which are involved in the normal development of lateral roots and flowers in plants. However, their roles in embryo development are still unclear. Here, the pathway miR390-TAS3-ARF3/-4 was identified systematically for the first time during somatic embryo development in Dimocarpus longan. We identified the miR390 primary transcript and promoter. The promoter contained cis-acting elements responsive to stimuli such as light, salicylic acid, anaerobic induction, fungal elicitor, circadian control and heat stress. The longan TAS3 transcript, containing two miR390-binding sites, was isolated; the miR390- guided cleavage site located near the 3' end of the TAS3 transcript was verified. Eight TAS3-tasiRNAs with the 21-nucleotide phase were found among longan small RNA data, further confirming that miR390-directed TAS3 cleavage leads to the production of tasiRNA in longan. Among them, TAS3_5'D5+ and 5'D6+ tasiRNAs were highly abundant, and verified to target ARF3 and -4, implying that miR390-guided TAS3 cleavage with 21-nucleotide phase leading to the production of tasiRNA-ARF is conserved in plants. Pri-miR390 was highly expressed in friable-embryogenic callus (EC), and less expressed in incomplete compact pro-embryogenic cultures,while miR390 showed its lowest expression in EC and highest expression in torpedo-shaped embryo. DlTAS3 and DlARF4 both exhibited their lowest expressions in EC, and reached their peaks in the globular embryos stage, which were mainly inversely proportional to the expression of miR390, especially at the GE to CE stages. While DlARF3 showed little variation from the EC to torpedo-shaped embryos stages, and exhibited its lowest expression in the cotyledonary embryos stage. There was a general lack of correlation between the expressions of DlARF3 and miR390. In addition, miR390, DlTAS3, DlARF3, and -4 were up-regulated by 2,4-D in a concentration-dependent manner. They were also preferentially expressed in roots, pulp, and seeds of ‘Sijimi’ longan, implying their extended roles in the development of longan roots and fruit. This study provided insights into a possible role of miR390-tasiRNAs-ARF in plant somatic embryo development

    Metasurface spectrometers beyond resolution-sensitivity constraints

    Full text link
    Optical spectroscopy plays an essential role across scientific research and industry for non-contact materials analysis1-3, increasingly through in-situ or portable platforms4-6. However, when considering low-light-level applications, conventional spectrometer designs necessitate a compromise between their resolution and sensitivity7,8, especially as device and detector dimensions are scaled down. Here, we report on a miniaturizable spectrometer platform where light throughput onto the detector is instead enhanced as the resolution is increased. This planar, CMOS-compatible platform is based around metasurface encoders designed to exhibit photonic bound states in the continuum9, where operational range can be altered or extended simply through adjusting geometric parameters. This system can enhance photon collection efficiency by up to two orders of magnitude versus conventional designs; we demonstrate this sensitivity advantage through ultra-low-intensity fluorescent and astrophotonic spectroscopy. This work represents a step forward for the practical utility of spectrometers, affording a route to integrated, chip-based devices that maintain high resolution and SNR without requiring prohibitively long integration times

    Coevolution in Hybrid Genomes: Nuclear-Encoded Rubisco Small Subunits and Their Plastid-Targeting Translocons Accompanying Sequential Allopolyploidy Events in Triticum

    Get PDF
    The Triticum/Aegilops complex includes hybrid species resulting from homoploid hybrid speciation and allopolyploid speciation. Sequential allotetra- and allohexaploidy events presumably result in two challenges for the hybrids, which involve 1) cytonuclear stoichiometric disruptions caused by combining two diverged nuclear genomes with the maternal inheritance of the cytoplasmic organellar donor; and 2) incompatibility of chimeric protein complexes with diverged subunits from nuclear and cytoplasmic genomes. Here, we describe coevolution of nuclear rbcS genes encoding the small subunits of Rubisco (ribulose 1,5-bisphosphate carboxylase/oxygenase) and nuclear genes encoding plastid translocons, which mediate recognition and translocation of nuclear-encoded proteins into plastids, in allopolyploid wheat species. We demonstrate that intergenomic paternal-to-maternal gene conversion specifically occurred in the genic region of the homoeologous rbcS3 gene from the D-genome progenitor of wheat (abbreviated as rbcS3D) such that it encodes a maternal-like or B-subgenome-like SSU3D transit peptide in allohexaploid wheat but not in allotetraploid wheat. Divergent and limited interaction between SSU3D and the D-subgenomic TOC90D translocon subunit is implicated to underpin SSU3D targeting into the chloroplast of hexaploid wheat. This implicates early selection favoring individuals harboring optimal maternal-like organellar SSU3D targeting in hexaploid wheat. These data represent a novel dimension of cytonuclear evolution mediated by organellar targeting and transportation of nuclear proteins

    Innovative photo booth system

    No full text
    iPhotoBooth is an innovative photo booth system integrated with augmented reality technology. This system is consisting of an iOS application and a responsive website. This final year project aims at providing an innovative entertainment for events which is able to solve some weakness of the traditional photo booth and become another popular trend. This report is a comprehensive summary of final year project which includes analysis of traditional photo booth, idea and solution to solve weakness of traditional photo booth, explanation of design and functions of iOS application and website, first display on events, overcame problems, conclusion and further usage in future. The gold of this report is to provide a clear understanding of iPhotoBooth itself and a vision how to improve photo booth business and benefit society. Nevertheless, commercializing an application cannot take place overnight. A long-term strategy, like lean startup management, is necessary to review and revise this application. That is why the author keep looking for opportunities to display iPhotoBooth in real event. This is just one step in AR entertainment, however, it is believed that this kind of idea and system will be wild used in future.Bachelor of Engineerin

    Kurtosis Based Empirical Mode Decomposition for Rolling Bearing Fault Detection

    Get PDF
    A bearing fault diagnosis approach based on spectral kurtosis and empirical mode decomposition (EMD) is proposed. EMD is a signal decomposition technique, which can adaptively separate a number of intrinsic mode functions (IMFs) from the vibration signal according to the architectural characteristics of the data. The spectral kurtosis parameter takes as signal impulsive indicator. Firstly, EMD is utilized to process the sampling vibration signal. And then spectral kurtosis is calculated to select the optimal intrinsic mode functions, so as to suppress the noise and highlight the transient impact feature. Finally, the envelope spectrum is computed and the fault characteristic is recognized. The experimental results show that the proposed approach can identify bearing defects effectively and provide a reliable method for gearbox fault monitoring and diagnosis

    GenUI: Interactive and Extensible Open Source Software Platform for De Novo Molecular Generation

    No full text
    This manuscript describes the development and architecture of the GenUI software platform for integration of molecular generators. The source code for the components of the platform is available in the following repositories:https://github.com/martin-sicho/genuihttps://github.com/martin-sicho/genui-guihttps://github.com/martin-sicho/genui-docker</div
    • …
    corecore