21 research outputs found

    B7DC/PDL2 Promotes Tumor Immunity by a PD-1–independent Mechanism

    Get PDF
    B7H1 (PDL1) and B7DC (PDL2) are two new members of the B7 family that can interact with PD-1, a putative negative regulator for immune function. Recent studies have provided evidence for inhibitory functions of both members via PD-1. Meanwhile, compelling evidence exists for costimulatory function of both members. Here we demonstrate that expression of B7DC on the tumor cells promotes CD8 T cell–mediated rejection of tumor cells, at both the induction and effector phase of antitumor immunity. Moreover, B7DC binds to PD-1(−/−) cells and enhances T cell killing in a PD-1–independent mechanism. Our results demonstrate a novel pathway for B7DC to promote tumor immunity and may reconcile the apparently contradictory findings on the function of B7DC

    FOXP3 Is an X-Linked Breast Cancer Suppressor Gene and an Important Repressor of the HER-2/ErbB2 Oncogene

    Get PDF
    The X-linked Foxp3 is a member of the forkhead/winged helix transcription factor family. Germ-line mutations cause lethal autoimmune diseases in males. Serendipitously, we observed that Foxp3sf/+ heterozygous mice developed cancer at a high rate. The majority of the cancers were mammary carcinomas in which the wild-type Foxp3 allele was inactivated and ErbB2 was over-expressed. Foxp3 bound and repressed the ErbB2 promoter. Deletion, functionally significant somatic mutations and down-regulation of the FOXP3 gene were commonly found in human breast cancer samples and correlated significantly with HER-2 over-expression, regardless of the status of HER-2 amplification. In toto, the data demonstrate that FOXP3 is an X-linked breast cancer suppressor gene and an important regulator of the HER-2/ErbB2 oncogene

    Precancerous Stem Cells Have the Potential for both Benign and Malignant Differentiation

    Get PDF
    Cancer stem cells (CSCs) have been identified in hematopoietic and solid tumors. However, their precursors—namely, precancerous stem cells (pCSCs) —have not been characterized. Here we experimentally define the pCSCs that have the potential for both benign and malignant differentiation, depending on environmental cues. While clonal pCSCs can develop into various types of tissue cells in immunocompetent mice without developing into cancer, they often develop, however, into leukemic or solid cancers composed of various types of cancer cells in immunodeficient mice. The progress of the pCSCs to cancers is associated with the up-regulation of c-kit and Sca-1, as well as with lineage markers. Mechanistically, the pCSCs are regulated by the PIWI/AGO family gene called piwil2. Our results provide clear evidence that a single clone of pCSCs has the potential for both benign and malignant differentiation, depending on the environmental cues. We anticipate pCSCs to be a novel target for the early detection, prevention, and therapy of cancers

    Differentiation of Monocytic Cell Clones into CD8α +

    No full text
    corecore