10,629 research outputs found
A feature extracting and meshing approach for sheet-like structures in rocks
Meshing rock samples with sheet-like structures based their CT scanned volumetric images, is a crucial component for both visualization and numerical simulation. In rocks, fractures and veins commonly exist in the form of sheet-like objects (e.g. thin layers and distinct flat shapes), which are much smaller than the rock mass dimensions. The representations of such objects require high-resolution 3D images with a huge dataset, which are difficult and even impossible to visualize or analyze by numerical methods. Therefore, we develop a microscopic image based meshing approach to extract major sheet-like structures and then preserve their major geometric features at the macroscale. This is achieved by the following four major steps: (1) extracting major objects through extending, separation and recovering operations based on the CT scanned data/microscopic images; (2) simplifying and constructing a simplified centroidal Voronoi diagram on the extracted structures; (3) generating triangular meshes to represent the structure; (4) generating volume tetrahedron meshes constrained with the above surface mesh as the internal surfaces. Moreover, a shape similarity approach is proposed to measure and evaluate how similar the generated mesh models to the original rock samples. It is applied as criteria for further mesh generation to better describe the rock features with fewer elements. Finally, a practical CT scanned rock is taken as an application example to demonstrate the usefulness and capability of the proposed approach
Zero-bias conductance peak and Josephson effect in graphene-NbTiN junctions
We report electronic transport measurements of graphene contacted by NbTiN
electrodes, which at low temperature remain superconducting up to at least 11
Tesla. In devices with a single superconducting contact, we find a more than
twofold enhancement of the conductance at zero bias, which we interpret in
terms of reflectionless tunneling. In devices with two superconducting
contacts, we observe the Josephson effect, bipolar supercurrents and Fraunhofer
patterns.Comment: 6 pages, 5 figure
Pure spin current in a two-dimensional topological insulator
We predict a mechanism to generate a pure spin current in a two-dimensional
topological insulator. As the magnetic impurities exist on one of edges of the
two-dimensional topological insulator, a gap is opened in the corresponding
gapless edge states but another pair of gapless edge states with opposite spin
are still protected by the time-reversal symmetry. So the conductance plateaus
with the half-integer values can be obtained in the gap induced by
magnetic impurities, which means that the pure spin current can be induced in
the sample. We also find that the pure spin current is insensitive to weak
disorder. The mechanism to generate pure spin currents is generalized for
two-dimensional topological insulators.Comment: 5 pages, 6 figure
Quantum Anomalous Hall Effect in HgMnTe Quantum Wells
The quantum Hall effect is usually observed when the two-dimensional electron
gas is subjected to an external magnetic field, so that their quantum states
form Landau levels. In this work we predict that a new phenomenon, the quantum
anomalous Hall effect, can be realized in HgMnTe quantum wells,
without the external magnetic field and the associated Landau levels. This
effect arises purely from the spin polarization of the atoms, and the
quantized Hall conductance is predicted for a range of quantum well thickness
and the concentration of the atoms. This effect enables dissipationless
charge current in spintronics devices.Comment: 5 pages, 3 figures. For high resolution figures see final published
version when availabl
Magnetization reversal in Kagome artificial spin ice studied by first-order reversal curves
Magnetization reversal of interconnected Kagome artificial spin ice was
studied by the first-order reversal curve (FORC) technique based on the
magneto-optical Kerr effect and magnetoresistance measurements. The
magnetization reversal exhibits a distinct six-fold symmetry with the external
field orientation. When the field is parallel to one of the nano-bar branches,
the domain nucleation/propagation and annihilation processes sensitively depend
on the field cycling history and the maximum field applied. When the field is
nearly perpendicular to one of the branches, the FORC measurement reveals the
magnetic interaction between the Dirac strings and orthogonal branches during
the magnetization reversal process. Our results demonstrate that the FORC
approach provides a comprehensive framework for understanding the magnetic
interaction in the magnetization reversal processes of spin-frustrated systems
Image tag completion by local learning
The problem of tag completion is to learn the missing tags of an image. In
this paper, we propose to learn a tag scoring vector for each image by local
linear learning. A local linear function is used in the neighborhood of each
image to predict the tag scoring vectors of its neighboring images. We
construct a unified objective function for the learning of both tag scoring
vectors and local linear function parame- ters. In the objective, we impose the
learned tag scoring vectors to be consistent with the known associations to the
tags of each image, and also minimize the prediction error of each local linear
function, while reducing the complexity of each local function. The objective
function is optimized by an alternate optimization strategy and gradient
descent methods in an iterative algorithm. We compare the proposed algorithm
against different state-of-the-art tag completion methods, and the results show
its advantages
Control of plant stem cell function by conserved interacting transcriptional regulators
Plant stem cells in the shoot apical meristem (SAM) and root apical meristem are necessary for postembryonic development of above-ground tissues and roots, respectively, while secondary vascular stem cells sustain vascular development(1-4). WUSCHEL (WUS), a homeodomain transcription factor expressed in the rib meristem of the Arabidopsis SAM, is a key regulatory factor controlling SAM stem cell populations(5,6), and is thought to establish the shoot stem cell niche through a feedback circuit involving the CLAVATA3 (CLV3) peptide signalling pathway(7). WUSCHEL-RELATED HOMEOBOX 5 (WOX5), which is specifically expressed in the root quiescent centre, defines quiescent centre identity and functions interchangeably with WUS in the control of shoot and root stem cell niches(8). WOX4, expressed in Arabidopsisprocambial cells, defines the vascular stem cell niche(9-11). WUS/WOX family proteins are evolutionarily and functionally conserved throughout the plant kingdom(1,2) and emerge as key actors in the specification and maintenance of stem cells within all meristems13. However, the nature of the genetic regime in stem cell niches that centre on WOX gene function has been elusive, and molecular links underlying conserved WUS/WOX function in stem cell niches remain unknown. Here we demonstrate that the Arabidopsis HAIRY MERISTEM (HAM) family of transcription regulators act as conserved interacting cofactors with WUS/WOX proteins. HAM and WUS share common targets in vivo and their physical interaction is important in driving downstream transcriptional programs and in promoting shoot stem cell proliferation. Differences in the overlapping expression patterns of WOX and HAM family members underlie the formation of diverse stem cell niche locations, and the HAM family is essential for all of these stem cell niches. These findings establish a new framework for the control of stem cell production during plant development
A Cellular Automata Model with Probability Infection and Spatial Dispersion
In this article, we have proposed an epidemic model by using probability
cellular automata theory. The essential mathematical features are analyzed with
the help of stability theory. We have given an alternative modelling approach
for the spatiotemporal system which is more realistic and satisfactory from the
practical point of view. A discrete and spatiotemporal approach are shown by
using cellular automata theory. It is interesting to note that both size of the
endemic equilibrium and density of the individual increase with the increasing
of the neighborhood size and infection rate, but the infections decrease with
the increasing of the recovery rate. The stability of the system around the
positive interior equilibrium have been shown by using suitable Lyapunov
function. Finally experimental data simulation for SARS disease in China and a
brief discussion conclude the paper
- …