31,204 research outputs found

    Very deep spectroscopy of the bright Saturn Nebula NGC 7009 - II. Analysis of the rich optical recombination spectrum

    Full text link
    [Abridged] We present a critical analysis of the rich optical recombination spectrum of NGC 7009, in the context of the bi-abundance nebular model proposed by Liu et al. (2000). The observed relative intensities are compared with the theoretical predictions based on high quality effective recombination coefficients, now available for the recombination line spectrum of a number of heavy element ions. The possibility of plasma diagnostics using the optical recombination lines (ORLs) of heavy element ions is discussed in detail. Plasma diagnostics based on the N II and O II recombination spectra both yield electron temperatures close to 1000 K, which is lower than those derived from the collisionally excited line (CEL) ratios by nearly one order of magnitude. The very low temperatures yielded by the O II and N II ORLs indicate that they originate from very cold regions. The C^{2+}/H^+, N^{2+}/H^+, O^{2+}/H^+ and Ne^{2+}/H^+ ionic abundance ratios derived from ORLs are consistently higher, by about a factor of 5, than the corresponding values derived from CELs. In calculating the ORL ionic abundance ratios, we have used the newly available high quality effective recombination coefficients, and adopted an electron temperature of 1000 K, as given by the ORL diagnostics and as a consequence presumably representing the physical conditions prevailing in the regions where the heavy element ORLs arise. A comparison of the results of plasma diagnostics and abundance determinations for NGC 7009 points to the existence of "cold", metal-rich (i.e. H-deficient) inclusions embedded in the hot, diffuse ionized gas, first postulated by Liu et al. (2000).Comment: Accepted for publication in MNRAS (50 pages of main text; 13 pages of appendix; in total 55 figures and 28 tables

    An introduction to a new space debris evolution model -- SOLEM

    Full text link
    SOLEM is the first space debris long-term evolution model of China. This paper describes the principles, components and workflow of the SOLEM. The effects of different mitigation measures based on SOLEM model are analyzed and presented. The limitation of the model is pointed out and its future improvement work-plan is prospected.Comment: 16 pages, 14 figure

    Extended thermodynamics and microstructures of four-dimensional charged Gauss-Bonnet black hole in AdS space

    Full text link
    The discovery of new four-dimensional black hole solutions presents a new approach to understand the Gauss-Bonnet gravity in low dimensions. In this paper, we test the Gauss-Bonnet gravity by studying the phase transition and microstructures for the four-dimensional charged AdS black hole. In the extended phase space, where the cosmological constant and the Gauss-Bonnet coupling parameter are treated as thermodynamic variables, we find that the thermodynamic first law and the corresponding Smarr formula are satisfied. Both in the canonical ensemble and grand canonical ensemble, we observe the small-large black hole phase transition, which is similar to the case of the van der Walls fluid. This phase transition can also appear in the neutral black hole system. Furthermore, we construct the Ruppeiner geometry, and find that besides the attractive interaction, the repulsive interaction can also dominate among the microstructures for the small black hole with high temperature in a charged or neutral black hole system. This is quite different from the five-dimensional neutral black hole, for which only dominant attractive interaction can be found. The critical behaviors of the normalized scalar curvature are also examined. These results will shed new light into the characteristic property of four-dimensional Gauss-Bonnet gravity.Comment: 17 pages, 9 figures, and 2 tables, references added. Accepted for publication in PR

    Equatorial and quasi-equatorial gravitational lensing by Kerr black hole pierced by a cosmic string

    Full text link
    In the present paper, we study numerically the equatorial lensing and quasiequatorial lensing by Kerr black hole pierced by a cosmic string in the strong deflection limit. We calculate the strong deflection limit coefficients and the deflection angle, which are found to depend closely on the cosmic string parameter β\beta and dimensionless spin a∗a_{*}. The magnification and positions of relativistic images are also computed in the strong deflection limit and a two-dimensional lens equation is derived. The most important and outstanding effect is that the caustics drift away from the optical axis and shift in the clockwise direction with respect to the Kerr black hole. For fixed a∗a_{*} of the black hole, the caustics drift farther away from the optical axis for a large value of β\beta. And for fixed β\beta, they drift farther for high a∗a_{*}. We also obtain the intersections of the critical curves with the equatorial plane, which decrease with a∗a_{*} and β\beta. In particular, we obtain a quantity μˉk+1/μˉk\bar{\mu}_{k+1}/\bar{\mu}_{k}, which is independent of the black hole spin and mass. Thus, through measuring it, one is allowed to determine the value of β\beta from astronomical observations.Comment: 29 pages, 9 figure

    Clapeyron equations and fitting formula of the coexistence curve in the extended phase space of charged AdS black holes

    Full text link
    In this paper, we first review the equal area laws and Clapeyron equations in the extended phase space of the charged anti-de Sitter black holes. With different fixed parameters, the Maxwell's equal area law holds not only in the pressure-thermodynamic volume oscillatory line, but also in the charge-electric potential and temperature-entropy oscillatory lines. The conventional Clapeyron equation is generalized and two extra equations are found. Moreover, we show that the coexistence curve of the small and large charged black holes is charge independent in the reduced parameter space for any dimension of spacetime. The highly accurate fitting formula for the coexistence curve is also presented. Using this fitting formula of the coexistence curve, we find that the Clapeyron equations are highly consistent with the calculated values. The fitting formula is also very useful for further study on the thermodynamic property of the system varying along the coexistence curve.Comment: 13 pages, 7 figures, 2 tables. The coexistence curves are refitted, and the figures and tables are changed accordingly. Accepted for publication in PR

    Observing the shadow of Einstein-Maxwell-Dilaton-Axion black hole

    Full text link
    In this paper, the shadows cast by Einstein-Maxwell-Dilaton-Axion black hole and naked singularity are studied. The shadow of a rotating black hole is found to be a dark zone covered by a deformed circle. For a fixed value of the spin aa, the size of the shadow decreases with the dilaton parameter bb. The distortion of the shadow monotonically increases with bb and takes its maximal when the black hole approaches to the extremal case. Due to the optical properties, the area of the black hole shadow is supposed to equal to the high-energy absorption cross section. Based on this assumption, the energy emission rate is investigated. For a naked singularity, the shadow has a dark arc and a dark spot or straight, and the corresponding observables are obtained. These results show that there is a significant effect of the spin aa and dilaton parameter bb on these shadows. Moreover, we examine the observables of the shadow cast by the supermassive black hole at the center of the Milky Way, which is very useful for us to probe the nature of the black hole through the astronomical observations in the near future.Comment: 16 pages, 7 figures, and 2 tables. arXiv admin note: text overlap with arXiv:1112.6349 by other author

    Photon orbits and thermodynamic phase transition of dd-dimensional charged AdS black holes

    Full text link
    We study the relationship between the null geodesics and thermodynamic phase transition for the charged AdS black hole. In the reduced parameter space, we find that there exist non-monotonic behaviors of the photon sphere radius and the minimum impact parameter for the pressure below its critical value. The study also shows that the changes of the photon sphere radius and the minimum impact parameter can serve as order parameters for the small-large black hole phase transition. In particular, these changes have an universal exponent of 12\frac{1}{2} near the critical point for any dimension dd of spacetime. These results imply that there may exist universal critical behavior of gravity near the thermodynamic critical point of the black hole system.Comment: 11 pages, 6 figure

    Implementing black hole as efficient power plant

    Full text link
    Treating the black hole molecules as working substance and considering its phase structure, we study the black hole heat engine by a charged anti-de Sitter black hole. In the reduced temperature-entropy chart, it is found that the work, heat, and efficiency of the engine are free of the black hole charge. Applying the Rankine cycle with or without a back pressure mechanism to the black hole heat engine, the compact formula for the efficiency is obtained. And the heat, work and efficiency are worked out. The result shows that the black hole engine working along the Rankine cycle with a back pressure mechanism has a higher efficiency. This provides a novel and efficient mechanism to produce the useful mechanical work, and such black hole heat engine may act as a possible energy source for the high energy astrophysical phenomena near the black hole.Comment: 17 pages, 6 figures, and 2 table

    Area Spectrum of the Large AdS Black Hole from Quasinormal Modes

    Full text link
    Using the new physical interpretation of quasinormal modes proposed by Maggiore, we calculate the area and entropy spectra for the 3-dimensioal and 5-dimensional large AdS black holes. The spectra are obtained by imposing the Bohr-Sommerfeld quantization condition to the adiabatic invariant quantity. With this semiclassical method, we find that the spacings of the area and entropy spectra are equidistant and independent of the AdS radius of the black hole for both the cases. However, the spacings of the spectra are not the same for different dimension of space-time. The equidistant area spectra will be broken when the black hole has other parameters (i.e., charge and angular momentum) or in a non-Einstein's gravity theory.Comment: 10 pages, no figure

    Establishing a universal relation between gravitational waves and black hole lensing

    Full text link
    Black hole lensing and gravitational waves are, respectively, closely dependent of the property of the lens and radiation source. In this letter, a universal relation between them is established for a rotating black hole acting simultaneously as a lens and a gravitational wave source, in an asymptotically flat spacetime. The relation only relies on the lens geometry and observable, while is independent of the specific nature of the black hole. Therefore, the possible gravitational wave sources could be located with modern astronomical instrument from the side of the lensing without knowing the specific nature of the black hole lens. Moreover, the low bound of the frequency of the gravitational waves can also be well determined.Comment: 6 pages, 3 figure
    • …
    corecore