5,251 research outputs found

    Natural Visualizations

    Get PDF
    This paper demonstrates the prevalence of a shared characteristic between visualizations and images of nature. We have analyzed visualization competitions and user studies of visualizations and found that the more preferred, better performing visualizations exhibit more natural characteristics. Due to our brain being wired to perceive natural images [SO01], testing a visualization for properties similar to those of natural images can help show how well our brain is capable of absorbing the data. In turn, a metric that finds a visualization’s similarity to a natural image may help determine the effectiveness of that visualization. We have found that the results of comparing the sizes and distribution of the objects in a visualization with those of natural standards strongly correlate to one’s preference of that visualization

    Layout of Multiple Views for Volume Visualization: A User Study

    Get PDF
    Abstract. Volume visualizations can have drastically different appearances when viewed using a variety of transfer functions. A problem then occurs in trying to organize many different views on one screen. We conducted a user study of four layout techniques for these multiple views. We timed participants as they separated different aspects of volume data for both time-invariant and time-variant data using one of four different layout schemes. The layout technique had no impact on performance when used with time-invariant data. With time-variant data, however, the multiple view layouts all resulted in better times than did a single view interface. Surprisingly, different layout techniques for multiple views resulted in no noticeable difference in user performance. In this paper, we describe our study and present the results, which could be used in the design of future volume visualization software to improve the productivity of the scientists who use it

    Multiple Uncertainties in Time-Variant Cosmological Particle Data

    Get PDF
    Though the mediums for visualization are limited, the potential dimensions of a dataset are not. In many areas of scientific study, understanding the correlations between those dimensions and their uncertainties is pivotal to mining useful information from a dataset. Obtaining this insight can necessitate visualizing the many relationships among temporal, spatial, and other dimensionalities of data and its uncertainties. We utilize multiple views for interactive dataset exploration and selection of important features, and we apply those techniques to the unique challenges of cosmological particle datasets. We show how interactivity and incorporation of multiple visualization techniques help overcome the problem of limited visualization dimensions and allow many types of uncertainty to be seen in correlation with other variables
    • …
    corecore