54 research outputs found

    Healthy or Not: A Way to Predict Ecosystem Health in GitHub

    Get PDF
    With the development of open source community, through the interaction of developers, the collaborative development of software, and the sharing of software tools, the formation of open source software ecosystem has matured. Natural ecosystems provide ecological services on which human beings depend. Maintaining a healthy natural ecosystem is a necessity for the sustainable development of mankind. Similarly, maintaining a healthy ecosystem of open source software is also a prerequisite for the sustainable development of open source communities, such as GitHub. This paper takes GitHub as an example to analyze the health condition of open source ecosystem and, also, it is a research area in Symmetry. Firstly, the paper presents the healthy definition of GitHub open source ecosystem health and, then, according to the main components of natural ecosystem health, the paper proposes the health indicators and health indicators evaluation method. Based on the above, the GitHub ecosystem health prediction method is proposed. By analyzing the projects and data collected in GitHub, it is found that, using the proposed evaluation indicators and method, we can analyze the healthy development trend of the GitHub ecosystem and contribute to the stability of ecosystem development

    Expression and Clinical Relevance of uPA and ET-1 in Non-small Cell Lung Cancer

    Get PDF
    Background and objective uPA and ET-1 proteins have been reported to be up-regulated in some of human cancers. The aim of this study is to investigate the alteration and clinical relevance of uPA and ET-1 protein levels in non-small cell lung cancer (NSCLC). Methods Expressions of uPA and ET-1 protein were detected in 155 cases of NSCLC with tissue microarrays and immunohistochemistry (TMA-IHC) technique. The correlations between the alteration of the two proteins and clinicopathological parameters were analyzed. Results Negative/weak, moderate and high expression of uPA were observed in 12.3%, 64.4% and 23.3% of squamous cell carcinomas, in 12.2%, 53.7% and 34.1% of adenocarcinomas, and in 12.3%, 58.7% and 29.0% of all cases. ET-1 presented negative/weak, moderate and high expression in 2.7%, 42.5% and 54.8% of squamous cell carcinomas, in 11.0%, 30.5% and 58.5% of adenocarcinomas, and in 7.1%, 36.1% and 56.8% of all cases. Simultaneously high expression of uPA and ET-1 were found in adenocarcinomas without lymph node metastasis (P=0.017). Adenocarcinoma patients with high expression of uPA or with high expression of both ET-1 and uPA had the longer survival time (P=0.007 and 0.016). Conclusion Detection of uPA and ET-1 protein levels might contribute to the prognosis evaluation of NSCLC

    Asymmetrical Biantennary Glycans Prepared by a Stop-and-Go Strategy Reveal Receptor Binding Evolution of Human Influenza A Viruses

    Get PDF
    Glycan binding properties of respiratory viruses have been difficult to probe due to a lack of biologically relevant glycans for binding studies. Here, a stop-and-go chemoenzymatic methodology is presented that gave access to a panel of 32 asymmetrical biantennary N-glycans having various numbers of N-acetyl lactosamine (LacNAc) repeating units capped by α2,3- or α2,6-sialosides resembling structures found in airway tissues. It exploits that the branching enzymes MGAT1 and MGAT2 can utilize unnatural UDP-2-deoxy-2-trifluoro-N-acetamido-glucose (UDP-GlcNTFA) as donor. The TFA moiety of the resulting glycans can be hydrolyzed to give GlcNH 2 at one of the antennae, which temporarily blocks extension by glycosyl transferases. The N-glycans were printed as a microarray that was probed for receptor binding specificities of the evolutionary distinct human A(H3N2) and A(H1N1)pdm09 viruses. It was found that not only the sialoside type but also the length of the LacNAc chain and presentation at the α1,3-antenna of N-glycans are critical for binding. Early A(H3N2) viruses bound to 2,6-sialosides at a single LacNAc moiety at the α1,3-antenna whereas later viruses required the sialoside to be presented at a tri-LacNAc moiety. Surprisingly, most of the A(H3N2) viruses that appeared after 2021 regained binding capacity to sialosides presented at a di-LacNAc moiety. As a result, these viruses again agglutinate erythrocytes, commonly employed for antigenic characterization of influenza viruses. Human A(H1N1)pdm09 viruses have similar receptor binding properties as recent A(H3N2) viruses. The data indicate that an asymmetric N-glycan having 2,6-sialoside at a di-LacNAc moiety is a commonly employed receptor by human influenza A viruses.</p

    In Situ Carbon Coated LiNi 0.5

    Get PDF
    Carbon coated spinel LiNi0.5Mn1.5O4 were prepared by spray-drying using prepolymer of melamine formaldehyde resin (PMF) as carbon source of carbon coating layer. The PMF carbon coated LiNi0.5Mn1.5O4 was characterized by XRD, SEM, and other electrochemical measurements. The as-prepared lithium nickel manganese oxide has the cubic face-centered spinel structure with a space group of Fd3m. It showed good electrochemical performance as a cathode material for lithium ion battery. After 100 discharge and charge cycles at 0.5 C rate, the specific discharge capacity of carbon coated LiNi0.5Mn1.5O4 was 130 mAh·g−1, and the corresponding capacity retention was 98.8%. The 100th cycle specific discharge capacity at 10 C rate of carbon coated LiNi0.5Mn1.5O4 was 105.4 mAh·g−1, and even the corresponding capacity retention was 95.2%

    Asymmetrical Biantennary Glycans Prepared by a Stop-and-Go Strategy Reveal Receptor Binding Evolution of Human Influenza A Viruses

    Get PDF
    Glycan binding properties of respiratory viruses have been difficult to probe due to a lack of biologically relevant glycans for binding studies. Here, a stop-and-go chemoenzymatic methodology is presented that gave access to a panel of 32 asymmetrical biantennary N-glycans having various numbers of N-acetyl lactosamine (LacNAc) repeating units capped by α2,3- or α2,6-sialosides resembling structures found in airway tissues. It exploits that the branching enzymes MGAT1 and MGAT2 can utilize unnatural UDP-2-deoxy-2-trifluoro-N-acetamido-glucose (UDP-GlcNTFA) as donor. The TFA moiety of the resulting glycans can be hydrolyzed to give GlcNH2 at one of the antennae, which temporarily blocks extension by glycosyl transferases. The N-glycans were printed as a microarray that was probed for receptor binding specificities of the evolutionary distinct human A(H3N2) and A(H1N1)pdm09 viruses. It was found that not only the sialoside type but also the length of the LacNAc chain and presentation at the α1,3-antenna of N-glycans are critical for binding. Early A(H3N2) viruses bound to 2,6-sialosides at a single LacNAc moiety at the α1,3-antenna whereas later viruses required the sialoside to be presented at a tri-LacNAc moiety. Surprisingly, most of the A(H3N2) viruses that appeared after 2021 regained binding capacity to sialosides presented at a di-LacNAc moiety. As a result, these viruses again agglutinate erythrocytes, commonly employed for antigenic characterization of influenza viruses. Human A(H1N1)pdm09 viruses have similar receptor binding properties as recent A(H3N2) viruses. The data indicate that an asymmetric N-glycan having 2,6-sialoside at a di-LacNAc moiety is a commonly employed receptor by human influenza A viruses

    Asymmetrical Bi-antennary Glycans Prepared by a Stop-and-Go Strategy Reveal Receptor Binding Evolution of Human Influenza A Viruses

    Get PDF
    Glycan binding properties of respiratory viruses have been difficult to probe due to a lack of biological relevant glycans for binding studies. Here, a stop-and-go chemoenzymatic methodology is presented that gave access to a panel of 32 asymmetrical bi-antennary N -glycans having various numbers of N -acetyl lactosamine (LacNAc) repeating units capped by α2,3- or α2,6-sialosides resembling structures found in airway tissues. It exploits that the branching enzymes MGAT1 and MGAT2 can utilize unnatural UDP-2-deoxy-2-trifluoro- N -acetamido-glucose (UDP-GlcNTFA) as donor. The TFA moiety of the resulting glycans can be hydrolyzed to give GlcNH 2 at one of the antennae that temporarily blocks extension by glycosyl transferases. The N -glycans were printed as a microarray that was probed for receptor binding specificities of evolutionary distinct human A(H3N2) and A(H1N1)pdm09 viruses. It was found that not only the sialoside type but also the length of the LacNAc chain and presentation at the α1,3-antenna of N -glycans is critical for binding. Early A(H3N2) viruses bound to 2,6-sialosides at a single LacNAc moiety at the α1,3-antenna whereas later viruses required the sialoside to be presented at a tri-LacNAc moiety. Surprisingly, most of the A(H3N2) viruses that appeared after 2021 regained binding capacity to sialosides presented at a di-LacNAc moiety. As a result, these viruses agglutinate erythrocytes again, commonly employed for antigenic characterization of influenza viruses. Human A(H1N1)pdm09 viruses have similar receptor binding properties as recent A(H3N2) viruses. The data indicates that an asymmetric N -glycan having 2,6-sialoside at a di-LacNAc moiety is a commonly employed receptor by human influenza A viruses

    Probing altered receptor specificities of antigenically drifting human H3N2 viruses by chemoenzymatic synthesis, NMR, and modeling

    Get PDF
    Prototypic receptors for human influenza viruses are N-glycans carrying α2,6-linked sialosides. Due to immune pressure, A/H3N2 influenza viruses have emerged with altered receptor specificities that bind α2,6-linked sialosides presented on extended N-acetyl-lactosamine (LacNAc) chains. Here, binding modes of such drifted hemagglutinin’s (HAs) are examined by chemoenzymatic synthesis of N-glycans having 13C-labeled monosaccharides at strategic positions. The labeled glycans are employed in 2D STD-1H by 13C-HSQC NMR experiments to pinpoint which monosaccharides of the extended LacNAc chain engage with evolutionarily distinct HAs. The NMR data in combination with computation and mutagenesis demonstrate that mutations distal to the receptor binding domain of recent HAs create an extended binding site that accommodates with the extended LacNAc chain. A fluorine containing sialoside is used as NMR probe to derive relative binding affinities and confirms the contribution of the extended LacNAc chain for binding

    Automatic segmentation of the left ventricle in cardiac MRI using local binary fitting model and dynamic programming techniques.

    No full text
    Segmentation of the left ventricle is very important to quantitatively analyze global and regional cardiac function from magnetic resonance. The aim of this study is to develop a novel algorithm for segmenting left ventricle on short-axis cardiac magnetic resonance images (MRI) to improve the performance of computer-aided diagnosis (CAD) systems. In this research, an automatic segmentation method for left ventricle is proposed on the basis of local binary fitting (LBF) model and dynamic programming techniques. The validation experiments are performed on a pool of data sets of 45 cases. For both endo- and epi-cardial contours of our results, percentage of good contours is about 93.5%, the average perpendicular distance are about 2 mm. The overlapping dice metric is about 0.91. The regression and determination coefficient between the experts and our proposed method on the LV mass is 1.038 and 0.9033, respectively; they are 1.076 and 0.9386 for ejection fraction (EF). The proposed segmentation method shows the better performance and has great potential in improving the accuracy of computer-aided diagnosis systems in cardiovascular diseases

    Exploration of the immunogenetic landscape of hyperprogressive disease after combined immunotherapy in cancer patients

    No full text
    Summary: The immune-genetic changes that occur in cancer patients experiencing hyperprogressive disease (HPD) during combined immunotherapy are unclear. In this study, HPD patients with pre- and post-HPD samples and non-HPD patients with solid tumors were molecularly characterized by genetic and tumor immune microenvironment (TiME) analyses of paired samples by whole-exome sequencing, RNA sequencing, and multiplex immunofluorescence. The genetic analysis of paired samples showed that almost all the tumor driver gene mutations were preserved between pre- and post-HPD tumors. HPD patients had higher frequencies of mutations in TP53 and CNN2, and a significantly higher mutant-allele tumor heterogeneity than non-HPD patients. Tumor IL-6 mRNA was upregulated in post-HPD samples vs. pre-HPD, accompanied by a potential immune suppressive TiME with an elevated M2/M1 ratio. Salvage treatment with irinotecan plus bevacizumab was effective in one HPD patient, who experienced prolonged survival. These genetic features and TiME characteristics might help identify the features of HPD after immunotherapy
    • …
    corecore