5,175 research outputs found

    Granule Cell Dispersion in Human Temporal Lobe Epilepsy: Proteomics investigation of neurodevelopmental migratory pathways

    Get PDF
    Granule cell dispersion (GCD) is a common pathological feature observed in the hippocampus of patients with Mesial Temporal Lobe Epilepsy (MTLE). Pathomechanisms underlying GCD remain to be elucidated, but one hypothesis proposes aberrant reactivation of neurodevelopmental migratory pathways, possibly triggered by febrile seizures. This study aims to compare the proteomes of basal and dispersed granule cells in the hippocampus of eight MTLE patients with GCD to identify proteins that may mediate GCD in MTLE. Quantitative proteomics identified 1882 proteins, of which 29% were found in basal granule cells only, 17% in dispersed only and 54% in both samples. Bioinformatics analyses revealed upregulated proteins in dispersed samples were involved in developmental cellular migratory processes, including cytoskeletal remodelling, axon guidance and signalling by Ras homologous (Rho) family of GTPases (P<0.01). The expression of two Rho GTPases, RhoA and Rac1, was subsequently explored in immunohistochemical and in situ hybridisation studies involving eighteen MTLE cases with or without GCD, and three normal post mortem cases. In cases with GCD, most dispersed granule cells in the outer-granular and molecular layers have an elongated soma and bipolar processes, with intense RhoA immunolabelling at opposite poles of the cell soma, while most granule cells in the basal granule cell layer were devoid of RhoA. A higher density and percentage of cells expressing RhoA was observed in cases with GCD than without GCD (P<0.004). In GCD cases, the density and percentage of cells expressing RhoA was significantly higher in the inner molecular layer than granule cell layer (P<0.026), supporting proteomic findings. In situ hybridisation studies using probes against RHOA and RAC1 mRNAs revealed fine peri- and nuclear puncta in granule cells of all cases. The density of cells expressing RHOA mRNAs were significantly higher in the inner molecular layer of cases with GCD than without GCD(P=0.05). In summary, our study has found limited evidence for ongoing adult neurogenesis in the hippocampus of patients with MTLE, but evidence of differential dysmaturation between dispersed and basal granule cells has been demonstrated, and elevated expression of Rho GTPases in dispersed granule cells may contribute to the pathomechanisms underpinning GCD in MTLE

    An Interesting Fitting of Quark Masses

    Full text link
    In this note we show an empirical formula of quark masses, which is found by implementing a least squares fit. In this formula the measured QCD coupling is almost a "best fitting coupling".Comment: 5 pages, 2 figure

    Design and Control of a Flight-Style AUV with Hovering Capability

    Get PDF
    The small flight-style Delphin AUV is designed to evaluate the performance of a long range survey AUV with the additional capability to hover and manoeuvre at slow speed. Delphin’s hull form is based on a scaled version of Autosub6000, and in addition to the main thruster and control surfaces at the rear of the vehicle, Delphin is equipped with four rim driven tunnel thrusters. In order to reduce the development cycle time, Delphin was designed to use commercial-off-the-shelf (COTS) sensors and thrusters interfaced to a standard PC motherboard running the control software within the MS Windows environment. To further simplify the development, the autonomy system uses the State-Flow Toolbox within the Matlab/Simulink environment. While the autonomy software is running, image processing routines are used for obstacle avoidance and target tracking, within the commercial Scorpion Vision software. This runs as a parallel thread and passes results to Matlab via the TCP/IP communication protocol. The COTS based development approach has proved effective. However, a powerful PC is required to effectively run Matlab and Simulink, and, due to the nature of the Windows environment, it is impossible to run the control in hard real-time. The autonomy system will be recoded to run under the Matlab Windows Real-Time Windows Target in the near future. Experimental results are used to demonstrating the performance and current capabilities of the vehicle are presented

    Microheated substrates for patterning cells and controlling development

    No full text
    Here, we seek to control cellular development by devising a means through which cells can be subjected to a microheated environment in standard culture conditions. Numerous techniques have been devised for controlling cellular function and development via manipulation of surface environmental cues at the micro- and nanoscale. It is well understood that temperature plays a significant role in the rate of cellular activities, migratory behavior (thermotaxis), and in some cases, protein expression. Yet, the effects and possible utilization of micrometer-scale temperature fields in cell cultures have not been explored. Toward this end, two types of thermally isolated microheated substrates were designed and fabricated, one with standard backside etching beneath a dielectric film and another with a combination of surface and bulk micromachining and backside etching. The substrates were characterized with infrared microscopy, finite element modeling, scanning electron microscopy, stylus profilometry, and electrothermal calibrations. Neuron culture studies were conducted on these substrates to 1) examine the feasibility of using a microheated environment to achieve patterned cell growth and 2) selectively accelerate neural development on regions less than 100mummu mwide. Results show that attached neurons, grown on microheated regions set at 37 circC~^circ C, extended processes substantially faster than those incubated at 25 circC~^circ Con the same substrate. Further, unattached neurons were positioned precisely along the length of the heater filament (operating at 45 circC~^circ C) using free convection currents. These preliminary findings indicate that microheated substrates may be used to direct cellular development spatially in a practical manner.$hfillhbox[1414]

    Spatiotemporal dynamics of PDGFRβ expression in pericytes and glial scar formation in penetrating brain injuries in adults

    Get PDF
    Aims: Understanding the spatiotemporal dynamics of reactive cell types following brain injury is important for future therapeutic interventions. We have previously used penetrating cortical injuries following intracranial recordings as a brain repair model to study scar-forming nestin-expressing cells. We now explore the relationship between nestin-expressing cells, PDGFRβ+ pericytes and Olig2+ glia, including their proliferation and functional maturation. Methods: In 32 cases, ranging from 3 to 461 days post injury (dpi), immunohistochemistry for PDGFRβ, nestin, GFAP, Olig2, MCM2, Aquaporin 4 (Aq4), Glutamine Synthetase (GS), and Connexin 43 (Cx43) were quantified for cell densities, labelling index (LI) and cellular co-expression at the injury site compared to control regions. Results: PDGFRβ labelling highlighted both pericytes and multipolar parenchymal cells. PDGFRβ LI and PDGFRβ+/MCM2+ cells significantly increased in injury zones at 10-13 dpi with migration of pericytes away from vessels with increased co-localisation of PDGRFβ with nestin compared to control regions (p < 0.005). Olig2+/MCM2+ cell populations peaked at 13 dpi with significantly higher cell densities at injury sites than in control regions (p < 0.01) and decreasing with dpi (p < 0.05). Cx43 LI was reduced in acute injuries but increased with dpi (p < 0.05) showing significant cellular co-localisation with nestin and GFAP (p<0.005 and p<0.0001) but not PDGFRβ. Conclusions: These findings indicate that PDGFRβ+ and Olig2+ cells contribute to the proliferative fraction following penetrating brain injuries, with evidence of pericyte migration. Dynamic changes in Cx43 in glial cell types with dpi suggests functional alterations during temporal stages of brain repair

    Neuropathology of 16p13.11 deletion in epilepsy

    Get PDF
    16p13.11 genomic copy number variants are implicated in several neuropsychiatric disorders, such as schizophrenia, autism, mental retardation, ADHD and epilepsy. The mechanisms leading to the diverse clinical manifestations of deletions and duplications at this locus are unknown. Most studies favour NDE1 as the leading disease-causing candidate gene at 16p13.11. In epilepsy at least, the deletion does not appear to unmask recessive-acting mutations in NDE1, with haploinsufficiency and genetic modifiers being prime candidate disease mechanisms. NDE1 encodes a protein critical to cell positioning during cortical development. As a first step, it is important to determine whether 16p13.11 copy number change translates to detectable brain structural alteration. We undertook detailed neuropathology on surgically resected brain tissue of two patients with intractable mesial temporal lobe epilepsy (MTLE), who had the same heterozygous NDE1-containing 800 kb 16p13.11 deletion, using routine histological stains and immunohistochemical markers against a range of layer-specific, white matter, neural precursor and migratory cell proteins, and NDE1 itself. Surgical temporal lobectomy samples from a MTLE case known not to have a deletion in NDE1 and three non-epilepsy cases were included as disease controls. We found that apart from a 3 mm hamartia in the temporal cortex of one MTLE case with NDE1 deletion and known hippocampal sclerosis in the other case, cortical lamination and cytoarchitecture were normal, with no differences between cases with deletion and disease controls. How 16p13.11 copy changes lead to a variety of brain diseases remains unclear, but at least in epilepsy, it would not seem to be through structural abnormality or dyslamination as judged by microscopy or immunohistochemistry. The need to integrate additional data with genetic findings to determine their significance will become more pressing as genetic technologies generate increasingly rich datasets. Detailed examination of brain tissue, where available, will be an important part of this process in neurogenetic disease specifically

    A Double-Layer Blockchain Based Trust Management Model for Secure Internet of Vehicles

    Get PDF
    The Internet of Vehicles (IoV) enables vehicles to share data that help vehicles perceive the surrounding environment. However, vehicles can spread false information to other IoV nodes; this incorrect information misleads vehicles and causes confusion in traffic, therefore, a vehicular trust model is needed to check the trustworthiness of the message. To eliminate the spread of false information and detect malicious nodes, we propose a double-layer blockchain trust management (DLBTM) mechanism to objectively and accurately evaluate the trustworthiness of vehicle messages. The double-layer blockchain consists of the vehicle blockchain and the RSU blockchain. We also quantify the evaluation behavior of vehicles to show the trust value of the vehicle’s historical behavior. Our DLBTM uses logistic regression to accurately compute the trust value of vehicles, and then predict the probability of vehicles providing satisfactory service to other nodes in the next stage. The simulation results show that our DLBTM can effectively identify malicious nodes, and over time, the system can recognize at least 90% of malicious nodes
    corecore