250,559 research outputs found
Comment on "Mass and K Lambda coupling of N*(1535)"
It is argued in [1] that when the strong coupling to the K Lambda channel is
considered, Breit-Wigner mass of the lightest orbital excitation of the nucleon
N(1535) shifts to a lower value. The new value turned out to be smaller than
the mass of the lightest radial excitation N(1440), which effectively solved
the long-standing problem of conventional constituent quark models. In this
Comment we show that it is not the Breit-Wigner mass of N(1535) that is
decreased, but its bare mass.
[1] B. C. Liu and B. S. Zou, Phys. Rev. Lett. 96, 042002 (2006).Comment: 3 pages, comment on "Mass and K Lambda coupling of N*(1535)", B. C.
Liu and B. S. Zou, Phys. Rev. Lett. 96, 042002 (2006
On integrable natural Hamiltonian systems on the suspensions of toric automorphism
We point out a mistake in the main statement of \cite{liu} and suggest and
proof a correct statement.Comment: 5 pages, no figure
Modelling of deep wells thermal modes
Purpose. Investigation of various heat-exchange conditions influence of the tower liquid on the deep wells thermal conditions.
Methods. Methods of heat-exchange processes mathematical modeling are used. On the basis of the developed scheme for calculation, the thermal condition in a vertical well with a concentric arrangement of the drill-string was investigated. It was assumed that the walls of the well are properly insulated, and there is no flow or loss of fluid. The temperature distribution in the Newtonian (water) and non-Newtonian (clay mud) liquid along the borehole was simulated taking into account changes in the temperature regime of rocks with depth. To verify the calculation method and determine the reliability of the results, a comparative analysis of the calculated and experimental data to determine the temperature of the drilling liquid in the well was performed.
Findings. A mathematical model for the study of temperature fields along the well depth was proposed and verified. A steady-state temperature distribution along the borehole is obtained for various types (Newtonian or non-Newtonian) tower liquid, with a linear law of change in rocks temperature with depth. It has been established that the temperature of the liquid flow at the face of hole and at the exit to the surface depends on the type of liquid used and the flow regime. It has been established that due to thermal insulation of drill pipe columns, heat-exchange between the downward and upward flow is reduced, which leads to a decrease in the temperature of the downward flow at the face of hole, providing a more favorable temperature at the face, which contributes to better destruction of the rock and cooling the tool during drilling.
Originality. The nature of temperature distribution and changes along the borehole under the steady-state mode of heat-exchange in a turbulent and structural flow regime for both Newtonian and non-Newtonian circulating liquid are revealed.
Practical implications. The proposed mathematical model and obtained results can be used to conduct estimates of the thermal conditions of wells and the development of recommendations for controlling the intensity of heat-exchange processes in the well, in accordance with the requirements of a specific technology.ΠΠ΅ΡΠ°. ΠΠΎΡΠ»ΡΠ΄ΠΆΠ΅Π½Π½Ρ Π²ΠΏΠ»ΠΈΠ²Ρ ΡΡΠ·Π½ΠΈΡ
ΡΠΌΠΎΠ² ΡΠ΅ΠΏΠ»ΠΎΠΎΠ±ΠΌΡΠ½Ρ ΡΠΈΡΠΊΡΠ»ΡΡΡΠΎΡ ΡΡΠ΄ΠΈΠ½ΠΈ Π½Π° ΡΠ΅ΠΏΠ»ΠΎΠ²ΠΈΠΉ ΡΠ΅ΠΆΠΈΠΌ Π³Π»ΠΈΠ±ΠΎΠΊΠΈΡ
ΡΠ²Π΅ΡΠ΄Π»ΠΎΠ²ΠΈΠ½.
ΠΠ΅ΡΠΎΠ΄ΠΈΠΊΠ°. ΠΠΈΠΊΠΎΡΠΈΡΡΠ°Π½ΠΎ ΠΌΠ΅ΡΠΎΠ΄ΠΈ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠ½ΠΎΠ³ΠΎ ΠΌΠΎΠ΄Π΅Π»ΡΠ²Π°Π½Π½Ρ ΠΏΡΠΎΡΠ΅ΡΡΠ² ΡΠ΅ΠΏΠ»ΠΎΠΎΠ±ΠΌΡΠ½Ρ. ΠΠ° ΠΎΡΠ½ΠΎΠ²Ρ ΡΠΎΠ·ΡΠΎΠ±Π»Π΅Π½ΠΎΡ ΡΡ
Π΅ΠΌΠΈ Π΄ΠΎ ΡΠΎΠ·ΡΠ°Ρ
ΡΠ½ΠΊΡ Π΄ΠΎΡΠ»ΡΠ΄ΠΆΡΠ²Π°Π²ΡΡ ΡΠ΅ΠΏΠ»ΠΎΠ²ΠΈΠΉ ΡΠ΅ΠΆΠΈΠΌ Ρ Π²Π΅ΡΡΠΈΠΊΠ°Π»ΡΠ½ΡΠΉ ΡΠ²Π΅ΡΠ΄Π»ΠΎΠ²ΠΈΠ½Ρ Π· ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠΈΡΠ½ΠΈΠΌ ΡΠΎΠ·ΡΠ°ΡΡΠ²Π°Π½Π½ΡΠΌ Π±ΡΡΠΈΠ»ΡΠ½ΠΎΡ ΠΊΠΎΠ»ΠΎΠ½ΠΈ. ΠΠ΅ΡΠ΅Π΄Π±Π°ΡΠ°Π»ΠΎΡΡ, ΡΠΎ ΡΡΡΠ½ΠΊΠΈ ΡΠ²Π΅ΡΠ΄Π»ΠΎΠ²ΠΈΠ½ΠΈ Π½Π°Π»Π΅ΠΆΠ½ΠΈΠΌ ΡΠΈΠ½ΠΎΠΌ ΡΠ·ΠΎΠ»ΡΠΎΠ²Π°Π½Ρ, ΠΏΡΠΈΠΏΠ»ΠΈΠ² Ρ Π²ΡΡΠ°ΡΠΈ ΡΡΠ΄ΠΈΠ½ΠΈ Π²ΡΠ΄ΡΡΡΠ½Ρ. ΠΠΎΠ΄Π΅Π»ΡΠ²Π°Π²ΡΡ ΡΠΎΠ·ΠΏΠΎΠ΄ΡΠ» ΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡ Ρ ΠΏΠΎΡΠΎΠΊΠ°Ρ
Π½ΡΡΡΠΎΠ½ΡΠ²ΡΡΠΊΠΎΡ (Π²ΠΎΠ΄ΠΈ) ΡΠ° Π½Π΅Π½ΡΡΡΠΎΠ½ΡΠ²ΡΡΠΊΠΎΡ (Π³Π»ΠΈΠ½ΠΈΡΡΠΎΠ³ΠΎ ΡΠΎΠ·ΡΠΈΠ½Ρ) ΡΡΠ΄ΠΈΠ½ ΡΠ·Π΄ΠΎΠ²ΠΆ ΡΡΠΎΠ²Π±ΡΡΠ° ΡΠ²Π΅ΡΠ΄Π»ΠΎΠ²ΠΈΠ½ΠΈ Π· ΡΡΠ°Ρ
ΡΠ²Π°Π½Π½ΡΠΌ Π·ΠΌΡΠ½ΠΈ ΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡΠ½ΠΎΠ³ΠΎ ΡΠ΅ΠΆΠΈΠΌΡ Π³ΡΡΡΡΠΊΠΈΡ
ΠΏΠΎΡΡΠ΄ Π· Π³Π»ΠΈΠ±ΠΈΠ½ΠΎΡ. ΠΠ»Ρ Π²Π΅ΡΠΈΡΡΠΊΠ°ΡΡΡ ΠΌΠ΅ΡΠΎΠ΄ΠΈΠΊΠΈ ΡΠΎΠ·ΡΠ°Ρ
ΡΠ½ΠΊΡ Ρ Π²ΠΈΠ·Π½Π°ΡΠ΅Π½Π½Ρ Π΄ΠΎΡΡΠΎΠ²ΡΡΠ½ΠΎΡΡΡ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡΠ² Π±ΡΠ² Π²ΠΈΠΊΠΎΠ½Π°Π½ΠΈΠΉ ΠΏΠΎΡΡΠ²Π½ΡΠ»ΡΠ½ΠΈΠΉ Π°Π½Π°Π»ΡΠ· ΡΠΎΠ·ΡΠ°Ρ
ΡΠ½ΠΊΠΎΠ²ΠΈΡ
ΡΠ° Π΅ΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΠΈΡ
Π΄Π°Π½ΠΈΡ
Π· Π²ΠΈΠ·Π½Π°ΡΠ΅Π½Π½Ρ ΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡΠΈ ΠΏΡΠΎΠΌΠΈΠ²Π½ΠΎΡ ΡΡΠ΄ΠΈΠ½ΠΈ Ρ ΡΠ²Π΅ΡΠ΄Π»ΠΎΠ²ΠΈΠ½Ρ.
Π Π΅Π·ΡΠ»ΡΡΠ°ΡΠΈ. ΠΠ°ΠΏΡΠΎΠΏΠΎΠ½ΠΎΠ²Π°Π½Π° Ρ Π²Π΅ΡΠΈΡΡΡΡΠΉΠΎΠ²Π°Π½Π° ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠ½Π° ΠΌΠΎΠ΄Π΅Π»Ρ Π΄Π»Ρ Π΄ΠΎΡΠ»ΡΠ΄ΠΆΠ΅Π½Π½Ρ ΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡΠ½ΠΈΡ
ΠΏΠΎΠ»ΡΠ² Π· Π³Π»ΠΈΠ±ΠΈΠ½ΠΎΡ ΡΠ²Π΅ΡΠ΄Π»ΠΎΠ²ΠΈΠ½ΠΈ. ΠΡΡΠΈΠΌΠ°Π½ΠΎ ΡΡΠ°ΡΡΠΎΠ½Π°ΡΠ½ΠΈΠΉ ΡΠΎΠ·ΠΏΠΎΠ΄ΡΠ» ΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡ ΡΠ·Π΄ΠΎΠ²ΠΆ ΡΡΠΎΠ²Π±ΡΡΠ° ΡΠ²Π΅ΡΠ΄Π»ΠΎΠ²ΠΈΠ½ΠΈ Π΄Π»Ρ ΡΡΠ·Π½ΠΈΡ
ΡΠΈΠΏΡΠ² (Π½ΡΡΡΠΎΠ½ΡΠ²ΡΡΠΊΠΈΡ
Π°Π±ΠΎ Π½Π΅Π½ΡΡΡΠΎΠ½ΡΠ²ΡΡΠΊΠΈΡ
) ΡΠΈΡΠΊΡΠ»ΡΡΡΠΈΡ
ΡΡΠ΄ΠΈΠ½ ΠΏΡΠΈ Π»ΡΠ½ΡΠΉΠ½ΠΎΠΌΡ Π·Π°ΠΊΠΎΠ½Ρ Π·ΠΌΡΠ½ΠΈ ΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡΠΈ Π³ΡΡΡΡΠΊΠΈΡ
ΠΏΠΎΡΡΠ΄ Π· Π³Π»ΠΈΠ±ΠΈΠ½ΠΎΡ. ΠΠΈΡΠ²Π»Π΅Π½ΠΎ, ΡΠΎ ΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡΠ° ΠΏΠΎΡΠΎΠΊΡ ΡΡΠ΄ΠΈΠ½ΠΈ Π½Π° Π²ΠΈΠ±ΠΎΡ ΡΠ²Π΅ΡΠ΄Π»ΠΎΠ²ΠΈΠ½ΠΈ Ρ Π½Π° Π²ΠΈΡ
ΠΎΠ΄Ρ Π½Π° Π΄Π΅Π½Π½Ρ ΠΏΠΎΠ²Π΅ΡΡ
Π½Ρ Π·Π°Π»Π΅ΠΆΠΈΡΡ Π²ΡΠ΄ ΡΠΈΠΏΡ Π²ΠΈΠΊΠΎΡΠΈΡΡΠΎΠ²ΡΠ²Π°Π½ΠΎΡ ΡΡΠ΄ΠΈΠ½ΠΈ Ρ ΡΠ΅ΠΆΠΈΠΌΡ ΡΠ΅ΡΡΡ. ΠΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΎ, ΡΠΎ Π·Π° ΡΠ°Ρ
ΡΠ½ΠΎΠΊ ΡΠ΅ΡΠΌΠΎΡΠ·ΠΎΠ»ΡΡΡΡ ΠΊΠΎΠ»ΠΎΠ½ΠΈ Π±ΡΡΠΈΠ»ΡΠ½ΠΈΡ
ΡΡΡΠ± Π·Π½ΠΈΠΆΡΡΡΡΡΡ ΡΠ΅ΠΏΠ»ΠΎΠΎΠ±ΠΌΡΠ½ ΠΌΡΠΆ Π½ΠΈΠ·Ρ
ΡΠ΄Π½ΠΈΠΌ Ρ Π²ΠΈΡΡ
ΡΠ΄Π½ΠΈΠΌ ΠΏΠΎΡΠΎΠΊΠ°ΠΌΠΈ, ΡΠΎ ΠΏΡΠΈΠ·Π²ΠΎΠ΄ΠΈΡΡ Π΄ΠΎ Π·Π½ΠΈΠΆΠ΅Π½Π½Ρ ΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡΠΈ Π½ΠΈΠ·Ρ
ΡΠ΄Π½ΠΎΠ³ΠΎ ΠΏΠΎΡΠΎΠΊΡ Π½Π° Π²ΠΈΠ±ΠΎΡ ΡΠ²Π΅ΡΠ΄Π»ΠΎΠ²ΠΈΠ½ΠΈ, Π·Π°Π±Π΅Π·ΠΏΠ΅ΡΡΡΡΠΈ Π±ΡΠ»ΡΡ ΡΠΏΡΠΈΡΡΠ»ΠΈΠ²ΠΈΠΉ ΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡΠ½ΠΈΠΉ ΡΠ΅ΠΆΠΈΠΌ Π½Π° Π²ΠΈΠ±ΠΎΡ, ΡΠΊΠΈΠΉ ΡΠΏΡΠΈΡΡ ΠΊΡΠ°ΡΠΎΠΌΡ ΡΡΠΉΠ½ΡΠ²Π°Π½Π½Ρ ΠΏΠΎΡΠΎΠ΄ΠΈ ΡΠ° ΠΎΡ
ΠΎΠ»ΠΎΠ΄ΠΆΠ΅Π½Π½Ρ ΡΠ½ΡΡΡΡΠΌΠ΅Π½ΡΡ ΠΏΡΠΈ Π±ΡΡΡΠ½Π½Ρ.
ΠΠ°ΡΠΊΠΎΠ²Π° Π½ΠΎΠ²ΠΈΠ·Π½Π°. ΠΠΈΡΠ²Π»Π΅Π½ΠΎ Ρ
Π°ΡΠ°ΠΊΡΠ΅Ρ ΡΠΎΠ·ΠΏΠΎΠ΄ΡΠ»Ρ ΡΠ° Π·ΠΌΡΠ½ΠΈ ΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡΠΈ Π²Π·Π΄ΠΎΠ²ΠΆ ΡΡΠΎΠ²Π±ΡΡΠ° ΡΠ²Π΅ΡΠ΄Π»ΠΎΠ²ΠΈΠ½ ΠΏΡΠΈ ΡΡΠ°ΡΡΠΎΠ½Π°ΡΠ½ΠΎΠΌΡ ΡΠ΅ΠΆΠΈΠΌΡ ΡΠ΅ΠΏΠ»ΠΎΠΎΠ±ΠΌΡΠ½Ρ Π² ΡΡΡΠ±ΡΠ»Π΅Π½ΡΠ½ΠΎΠΌΡ Ρ ΡΡΡΡΠΊΡΡΡΠ½ΠΎΠΌΡ ΡΠ΅ΠΆΠΈΠΌΠ°Ρ
ΡΠ΅ΡΡΡ ΡΠΊ Π΄Π»Ρ Π½ΡΡΡΠΎΠ½ΡΠ²ΡΡΠΊΠΈΡ
, ΡΠ°ΠΊ Ρ Π½Π΅Π½ΡΡΡΠΎΠ½ΡΠ²ΡΡΠΊΠΈΡ
ΡΠΈΡΠΊΡΠ»ΡΡΡΠΈΡ
ΡΡΠ΄ΠΈΠ½.
ΠΡΠ°ΠΊΡΠΈΡΠ½Π° Π·Π½Π°ΡΠΈΠΌΡΡΡΡ. ΠΠ°ΠΏΡΠΎΠΏΠΎΠ½ΠΎΠ²Π°Π½Π° ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠ½Π° ΠΌΠΎΠ΄Π΅Π»Ρ Ρ ΠΎΡΡΠΈΠΌΠ°Π½Ρ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠΈ ΠΌΠΎΠΆΡΡΡ Π²ΠΈΠΊΠΎΡΠΈΡΡΠΎΠ²ΡΠ²Π°ΡΠΈΡΡ Π΄Π»Ρ ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½Π½Ρ ΠΎΡΡΠ½ΠΎΡΠ½ΠΈΡ
ΡΠΎΠ·ΡΠ°Ρ
ΡΠ½ΠΊΡΠ² ΡΠ΅ΠΏΠ»ΠΎΠ²ΠΈΡ
ΡΠ΅ΠΆΠΈΠΌΡΠ² ΡΠ²Π΅ΡΠ΄Π»ΠΎΠ²ΠΈΠ½ ΡΠ° ΡΠΎΠ·ΡΠΎΠ±ΠΊΠΈ ΡΠ΅ΠΊΠΎΠΌΠ΅Π½Π΄Π°ΡΡΠΉ Π· ΡΠΏΡΠ°Π²Π»ΡΠ½Π½Ρ ΡΠ½ΡΠ΅Π½ΡΠΈΠ²Π½ΡΡΡΡ ΡΠ΅ΠΏΠ»ΠΎΠΎΠ±ΠΌΡΠ½Π½ΠΈΡ
ΠΏΡΠΎΡΠ΅ΡΡΠ² Ρ ΡΠ²Π΅ΡΠ΄Π»ΠΎΠ²ΠΈΠ½Ρ Π²ΡΠ΄ΠΏΠΎΠ²ΡΠ΄Π½ΠΎ Π΄ΠΎ Π²ΠΈΠΌΠΎΠ³ ΠΊΠΎΠ½ΠΊΡΠ΅ΡΠ½ΠΎΡ ΡΠ΅Ρ
Π½ΠΎΠ»ΠΎΠ³ΡΡ.Π¦Π΅Π»Ρ. ΠΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ Π²Π»ΠΈΡΠ½ΠΈΡ ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ
ΡΡΠ»ΠΎΠ²ΠΈΠΉ ΡΠ΅ΠΏΠ»ΠΎΠΎΠ±ΠΌΠ΅Π½Π° ΡΠΈΡΠΊΡΠ»ΠΈΡΡΡΡΠ΅ΠΉ ΠΆΠΈΠ΄ΠΊΠΎΡΡΠΈ Π½Π° ΡΠ΅ΠΏΠ»ΠΎΠ²ΠΎΠΉ
ΡΠ΅ΠΆΠΈΠΌ Π³Π»ΡΠ±ΠΎΠΊΠΈΡ
ΡΠΊΠ²Π°ΠΆΠΈΠ½.
ΠΠ΅ΡΠΎΠ΄ΠΈΠΊΠ°. ΠΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½Ρ ΠΌΠ΅ΡΠΎΠ΄Ρ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΌΠΎΠ΄Π΅Π»ΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΠΏΡΠΎΡΠ΅ΡΡΠΎΠ² ΡΠ΅ΠΏΠ»ΠΎΠΎΠ±ΠΌΠ΅Π½Π°. ΠΠ° ΠΎΡΠ½ΠΎΠ²Π΅ ΡΠ°Π·ΡΠ°Π±ΠΎΡΠ°Π½Π½ΠΎΠΉ ΡΡ
Π΅ΠΌΡ ΠΊ ΡΠ°ΡΡΠ΅ΡΡ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π»ΡΡ ΡΠ΅ΠΏΠ»ΠΎΠ²ΠΎΠΉ ΡΠ΅ΠΆΠΈΠΌ Π² Π²Π΅ΡΡΠΈΠΊΠ°Π»ΡΠ½ΠΎΠΉ ΡΠΊΠ²Π°ΠΆΠΈΠ½Π΅ Ρ ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠΈΡΠ΅ΡΠΊΠΈΠΌ ΡΠ°ΡΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ΠΌ Π±ΡΡΠΈΠ»ΡΠ½ΠΎΠΉ ΠΊΠΎΠ»ΠΎΠ½Ρ. ΠΡΠ΅Π΄ΠΏΠΎΠ»Π°Π³Π°Π»ΠΎΡΡ, ΡΡΠΎ ΡΡΠ΅Π½ΠΊΠΈ ΡΠΊΠ²Π°ΠΆΠΈΠ½Ρ Π½Π°Π΄Π»Π΅ΠΆΠ°ΡΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ ΠΈΠ·ΠΎΠ»ΠΈΡΠΎΠ²Π°Π½Ρ, ΠΏΡΠΈΡΠΎΠΊ ΠΈ ΠΏΠΎΡΠ΅ΡΠΈ ΠΆΠΈΠ΄ΠΊΠΎΡΡΠΈ ΠΎΡΡΡΡΡΡΠ²ΡΡΡ. ΠΠΎΠ΄Π΅Π»ΠΈΡΠΎΠ²Π°Π»ΠΎΡΡ ΡΠ°ΡΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡ Π² ΠΏΠΎΡΠΎΠΊΠ°Ρ
Π½ΡΡΡΠΎΠ½ΠΎΠ²ΡΠΊΠΎΠΉ (Π²ΠΎΠ΄Ρ) ΠΈ Π½Π΅Π½ΡΡΡΠΎΠ½ΠΎΠ²ΡΠΊΠΎΠΉ (Π³Π»ΠΈΠ½ΠΈΡΡΠΎΠ³ΠΎ ΡΠ°ΡΡΠ²ΠΎΡΠ°) ΠΆΠΈΠ΄ΠΊΠΎΡΡΠ΅ΠΉ Π²Π΄ΠΎΠ»Ρ ΡΡΠ²ΠΎΠ»Π° ΡΠΊΠ²Π°ΠΆΠΈΠ½Ρ Ρ ΡΡΠ΅ΡΠΎΠΌ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΡ ΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡΠ½ΠΎΠ³ΠΎ ΡΠ΅ΠΆΠΈΠΌΠ° Π³ΠΎΡΠ½ΡΡ
ΠΏΠΎΡΠΎΠ΄ Ρ Π³Π»ΡΠ±ΠΈΠ½ΠΎΠΉ. ΠΠ»Ρ Π²Π΅ΡΠΈΡΠΈΠΊΠ°ΡΠΈΠΈ ΠΌΠ΅ΡΠΎΠ΄ΠΈΠΊΠΈ ΡΠ°ΡΡΠ΅ΡΠ° ΠΈ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ Π΄ΠΎΡΡΠΎΠ²Π΅ΡΠ½ΠΎΡΡΠΈ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠΎΠ² Π±ΡΠ» Π²ΡΠΏΠΎΠ»Π½Π΅Π½ ΡΡΠ°Π²Π½ΠΈΡΠ΅Π»ΡΠ½ΡΠΉ Π°Π½Π°Π»ΠΈΠ· ΡΠ°ΡΡΠ΅ΡΠ½ΡΡ
ΠΈ ΡΠΊΡΠΏΠ΅ΡΠΈΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΡΡ
Π΄Π°Π½Π½ΡΡ
ΠΏΠΎ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡΡ ΠΏΡΠΎΠΌΡΠ²ΠΎΡΠ½ΠΎΠΉ ΠΆΠΈΠ΄ΠΊΠΎΡΡΠΈ Π² ΡΠΊΠ²Π°ΠΆΠΈΠ½Π΅.
Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ. ΠΡΠ΅Π΄Π»ΠΎΠΆΠ΅Π½Π° ΠΈ Π²Π΅ΡΠΈΡΠΈΡΠΈΡΠΎΠ²Π°Π½Π° ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠ°Ρ ΠΌΠΎΠ΄Π΅Π»Ρ Π΄Π»Ρ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡΠ½ΡΡ
ΠΏΠΎΠ»Π΅ΠΉ ΠΏΠΎ Π³Π»ΡΠ±ΠΈΠ½Π΅ ΡΠΊΠ²Π°ΠΆΠΈΠ½Ρ. ΠΠΎΠ»ΡΡΠ΅Π½ΠΎ ΡΡΠ°ΡΠΈΠΎΠ½Π°ΡΠ½ΠΎΠ΅ ΡΠ°ΡΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡ Π²Π΄ΠΎΠ»Ρ ΡΡΠ²ΠΎΠ»Π° ΡΠΊΠ²Π°ΠΆΠΈΠ½Ρ Π΄Π»Ρ ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ
ΡΠΈΠΏΠΎΠ² (Π½ΡΡΡΠΎΠ½ΠΎΠ²ΡΠΊΠΈΡ
ΠΈΠ»ΠΈ Π½Π΅Π½ΡΡΡΠΎΠ½ΠΎΠ²ΡΠΊΠΈΡ
) ΡΠΈΡΠΊΡΠ»ΠΈΡΡΡΡΠΈΡ
ΠΆΠΈΠ΄ΠΊΠΎΡΡΠ΅ΠΉ ΠΏΡΠΈ Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠΌ Π·Π°ΠΊΠΎΠ½Π΅ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΡ ΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡΡ Π³ΠΎΡΠ½ΡΡ
ΠΏΠΎΡΠΎΠ΄ Ρ Π³Π»ΡΠ±ΠΈΠ½ΠΎΠΉ. ΠΡΡΠ²Π»Π΅Π½ΠΎ, ΡΡΠΎ ΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡΠ° ΠΏΠΎΡΠΎΠΊΠ° ΠΆΠΈΠ΄ΠΊΠΎΡΡΠΈ Π½Π° Π·Π°Π±ΠΎΠ΅ ΡΠΊΠ²Π°ΠΆΠΈΠ½Ρ ΠΈ Π½Π° Π²ΡΡ
ΠΎΠ΄Π΅ Π½Π° Π΄Π½Π΅Π²Π½ΡΡ ΠΏΠΎΠ²Π΅ΡΡ
Π½ΠΎΡΡΡ Π·Π°Π²ΠΈΡΠΈΡ ΠΎΡ ΡΠΈΠΏΠ° ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΠ΅ΠΌΠΎΠΉ ΠΆΠΈΠ΄ΠΊΠΎΡΡΠΈ ΠΈ ΡΠ΅ΠΆΠΈΠΌΠ° ΡΠ΅ΡΠ΅Π½ΠΈΡ. Π£ΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½ΠΎ, ΡΡΠΎ Π·Π° ΡΡΠ΅Ρ ΡΠ΅ΡΠΌΠΎΠΈΠ·ΠΎΠ»ΡΡΠΈΠΈ ΠΊΠΎΠ»ΠΎΠ½Ρ Π±ΡΡΠΈΠ»ΡΠ½ΡΡ
ΡΡΡΠ± ΡΠ½ΠΈΠΆΠ°Π΅ΡΡΡ ΡΠ΅ΠΏΠ»ΠΎΠΎΠ±ΠΌΠ΅Π½ ΠΌΠ΅ΠΆΠ΄Ρ Π½ΠΈΡΡ
ΠΎΠ΄ΡΡΠΈΠΌ ΠΈ Π²ΠΎΡΡ
ΠΎΠ΄ΡΡΠΈΠΌ ΠΏΠΎΡΠΎΠΊΠ°ΠΌΠΈ, ΡΡΠΎ ΠΏΡΠΈΠ²ΠΎΠ΄ΠΈΡ ΠΊ ΡΠ½ΠΈΠΆΠ΅Π½ΠΈΡ ΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡΡ Π½ΠΈΡΡ
ΠΎΠ΄ΡΡΠ΅Π³ΠΎ ΠΏΠΎΡΠΎΠΊΠ° Π½Π° Π·Π°Π±ΠΎΠ΅ ΡΠΊΠ²Π°ΠΆΠΈΠ½Ρ, ΠΎΠ±Π΅ΡΠΏΠ΅ΡΠΈΠ²Π°Ρ Π±ΠΎΠ»Π΅Π΅ Π±Π»Π°Π³ΠΎΠΏΡΠΈΡΡΠ½ΡΠΉ ΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡΠ½ΡΠΉ ΡΠ΅ΠΆΠΈΠΌ Π½Π° Π·Π°Π±ΠΎΠ΅, ΠΊΠΎΡΠΎΡΡΠΉ ΡΠΏΠΎΡΠΎΠ±ΡΡΠ²ΡΠ΅Ρ Π»ΡΡΡΠ΅ΠΌΡ ΡΠ°Π·ΡΡΡΠ΅Π½ΠΈΡ ΠΏΠΎΡΠΎΠ΄Ρ ΠΈ ΠΎΡ
Π»Π°ΠΆΠ΄Π΅Π½ΠΈΡ ΠΈΠ½ΡΡΡΡΠΌΠ΅Π½ΡΠ° ΠΏΡΠΈ Π±ΡΡΠ΅Π½ΠΈΠΈ.
ΠΠ°ΡΡΠ½Π°Ρ Π½ΠΎΠ²ΠΈΠ·Π½Π°. ΠΡΡΠ²Π»Π΅Π½ Ρ
Π°ΡΠ°ΠΊΡΠ΅Ρ ΡΠ°ΡΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΠΈ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΡ ΡΠ΅ΠΌΠΏΠ΅ΡΠ°ΡΡΡΡ Π²Π΄ΠΎΠ»Ρ ΡΡΠ²ΠΎΠ»Π° ΡΠΊΠ²Π°ΠΆΠΈΠ½ ΠΏΡΠΈ ΡΡΠ°ΡΠΈΠΎΠ½Π°ΡΠ½ΠΎΠΌ ΡΠ΅ΠΆΠΈΠΌΠ΅ ΡΠ΅ΠΏΠ»ΠΎΠΎΠ±ΠΌΠ΅Π½Π° Π² ΡΡΡΠ±ΡΠ»Π΅Π½ΡΠ½ΠΎΠΌ ΠΈ ΡΡΡΡΠΊΡΡΡΠ½ΠΎΠΌ ΡΠ΅ΠΆΠΈΠΌΠ°Ρ
ΡΠ΅ΡΠ΅Π½ΠΈΡ ΠΊΠ°ΠΊ Π΄Π»Ρ Π½ΡΡΡΠΎΠ½ΠΎΠ²ΡΠΊΠΈΡ
, ΡΠ°ΠΊ ΠΈ Π½Π΅Π½ΡΡΡΠΎΠ½ΠΎΠ²ΡΠΊΠΈΡ
ΡΠΈΡΠΊΡΠ»ΠΈΡΡΡΡΠΈΡ
ΠΆΠΈΠ΄ΠΊΠΎΡΡΠ΅ΠΉ.
ΠΡΠ°ΠΊΡΠΈΡΠ΅ΡΠΊΠ°Ρ Π·Π½Π°ΡΠΈΠΌΠΎΡΡΡ. ΠΡΠ΅Π΄Π»ΠΎΠΆΠ΅Π½Π½Π°Ρ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠ°Ρ ΠΌΠΎΠ΄Π΅Π»Ρ ΠΈ ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΠ΅ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡ ΠΌΠΎΠ³ΡΡ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡΡΡ Π΄Π»Ρ ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½ΠΈΡ ΠΎΡΠ΅Π½ΠΎΡΠ½ΡΡ
ΡΠ°ΡΡΠ΅ΡΠΎΠ² ΡΠ΅ΠΏΠ»ΠΎΠ²ΡΡ
ΡΠ΅ΠΆΠΈΠΌΠΎΠ² ΡΠΊΠ²Π°ΠΆΠΈΠ½ ΠΈ ΡΠ°Π·ΡΠ°Π±ΠΎΡΠΊΠΈ ΡΠ΅ΠΊΠΎΠΌΠ΅Π½Π΄Π°ΡΠΈΠΉ ΠΏΠΎ ΡΠΏΡΠ°Π²Π»Π΅Π½ΠΈΡ ΠΈΠ½ΡΠ΅Π½ΡΠΈΠ²Π½ΠΎΡΡΡΡ ΡΠ΅ΠΏΠ»ΠΎΠΎΠ±ΠΌΠ΅Π½Π½ΡΡ
ΠΏΡΠΎΡΠ΅ΡΡΠΎΠ² Π² ΡΠΊΠ²Π°ΠΆΠΈΠ½Π΅ Π² ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΠΈΠΈ Ρ ΡΡΠ΅Π±ΠΎΠ²Π°Π½ΠΈΡΠΌΠΈ ΠΊΠΎΠ½ΠΊΡΠ΅ΡΠ½ΠΎΠΉ ΡΠ΅Ρ
Π½ΠΎΠ»ΠΎΠ³ΠΈΠΈ.The authors thank the Institute of Geotechnical Mechanics named by N. Poljakov of National Academy of Sciences of Ukraine (Dnipro, Ukraine) for providing technical and informational support in this work
The classification of traveling wave solutions and superposition of multi-solutions to Camassa-Holm equation with dispersion
Under the traveling wave transformation, Camassa-Holm equation with
dispersion is reduced to an integrable ODE whose general solution can be
obtained using the trick of one-parameter group. Furthermore combining complete
discrimination system for polynomial, the classifications of all single
traveling wave solutions to the Camassa-Holm equation with dispersion is
obtained. In particular, an affine subspace structure in the set of the
solutions of the reduced ODE is obtained. More general, an implicit linear
structure in Camassa-Holm equation with dispersion is found. According to the
linear structure, we obtain the superposition of multi-solutions to
Camassa-Holm equation with dispersion
Climatic control on the peak discharge of glacier outburst floods
Lakes impounded by natural ice dams occur in many glacier regions. Their sudden emptying along subglacial paths can unleash similar to 1 km(3) of floodwater, but predicting the peak discharge of these subglacial outburst floods ('jokulhlaups') is notoriously difficult. To study how environmental factors control jokulhlaup magnitude, we use thermo- mechanical modelling to interpret a 40- year flood record from Merzbacher Lake in the Tian Shan. We show that the mean air temperature during each flood modulates its peak discharge, by influencing both the rate of meltwater input to the lake as it drains, and the lake- water temperature. The flood devastation potential thus depends sensitively on weather, and this dependence explains how regional climatic warming drives the rising trend of peak discharges in our dataset. For other subaerial ice- dammed lakes worldwide, regional warming will also promote higher- impact jokulhlaups by raising the likelihood of warm weather during their occurrence, unless other factors reduce lake volumes at flood initiation to outweigh this effect
Bihamiltonian Cohomologies and Integrable Hierarchies I: A Special Case
We present some general results on properties of the bihamiltonian
cohomologies associated to bihamiltonian structures of hydrodynamic type, and
compute the third cohomology for the bihamiltonian structure of the
dispersionless KdV hierarchy. The result of the computation enables us to prove
the existence of bihamiltonian deformations of the dispersionless KdV hierarchy
starting from any of its infinitesimal deformations.Comment: 43 pages. V2: the accepted version, to appear in Comm. Math. Phy
- β¦