4 research outputs found

    Radar Remote Sensing of Agricultural Canopies: A Review

    No full text
    Observations from spaceborne radar contain considerable information about vegetation dynamics.The ability to extract this information could lead to improved soil moisture retrievals and the increased capacity to monitor vegetation phenology and water stress using radar data.The purpose of this review paper is to provide an overview of the current state of knowledge with respect to backscatter from vegetated (agricultural) landscapes and to identify opportunities and challenges in this domain.Much of our understanding of vegetation backscatter from agricultural canopies stems from SAR studies to perform field-scale classification and monitoring.Hence, SAR applications, theory, and applications are considered here too.An overview will be provided of the knowledge generated from ground-based and airborne experimental campaigns that contributed to the development of crop classification, crop monitoring, and soil moisture monitoring applications.A description of the current vegetation modeling approaches will be given.A review of current applications of spaceborne radar will be used to illustrate the current state of the art in terms of data utilization.Finally, emerging applications, opportunities and challenges will be identified and discussed.Improved representation of vegetation phenology and water dynamics will be identified as essential to improve soil moisture retrievals, crop monitoring, and for the development of emerging drought/water stress applications.Water Resource

    Response of sub-daily L-band backscatter to internal and surface canopy water dynamics

    No full text
    The latest developments in radar mission concepts suggest that subdaily synthetic aperture radar will become available in the next decades. The goal of this study was to demonstrate the potential value of subdaily spaceborne radar for monitoring vegetation water dynamics, which is essential to understand the role of vegetation in the climate system. In particular, we aimed to quantify fluctuations of internal and surface canopy water (SCW) and understand their effect on subdaily patterns of L-band backscatter. An intensive field campaign was conducted in north-central Florida, USA, in 2018. A truck-mounted polarimetric L-band scatterometer was used to scan a sweet corn field multiple times per day, from sowing to harvest. SCW (dew, interception), soil moisture, and plant and soil hydraulics were monitored every 15 min. In addition, regular destructive sampling was conducted to measure seasonal and diurnal variations of internal vegetation water content. The results showed that backscatter was sensitive to both transient rainfall interception events, and slower daily cycles of internal canopy water and dew. On late-season days without rainfall, maximum diurnal backscatter variations of >2 dB due to internal and SCW were observed in all polarizations. These results demonstrate a potentially valuable application for the next generation of spaceborne radar missions.Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.Water Resource

    A Fully Synthesizable Fractional-N MDLL With Zero-Order Interpolation-Based DTC Nonlinearity Calibration and Two-Step Hybrid Phase Offset Calibration

    No full text
    In this paper, a fully-synthesizable digital-to-time (DTC)-based fractional-N multiplying delay-locked loop,(MDLL) is presented. Noise and linearity of synthesizable DTCs are analyzed, and a two-stage synthesizable DTC is proposed in which a path-selection DTC is used as the coarse stage and a variable-slope DTC is used as the fine stage. To calibrate the DTC nonlinearity, a highly robust zero-order interpolation based nonlinearity calibration is proposed. Besides, the static phase offsets,(SPO) between bang-bang phase detector,(BBPD) and multiplexer,(MUX) are calibrated by a proposed hybrid analog/digital phase offset calibration, while the dynamic phase offsets,(DPO) are removed by a proposed complementary switching scheme. The co-design of the analog circuits and digital calibrations enable excellent jitter and spur performance. The MDLL achieves 0.70 and 0.48,ps root-mean-square,(RMS) jitter in fractional-N and integer-N modes, respectively. The fractional spur is less than -59.0,dBc, and the reference spur is -64.5,dBc. The power consumptions are 1.85,mW and 1.22,mW, corresponding to figures of merit,(FOM) of -240.4,dB and -245.5,dB.Electronic Instrumentatio

    Maximizing eco-environmental gains: Exploring underground wastewater treatment plants in Beijing for sustainable urban water management

    No full text
    This study assessed the evolution of wastewater systems during the rapid urbanization of Beijing, with special focuses on the carbon footprints and growing underground WWTPs (u-WWTPs). Specifically, the Bishui plant (in situ constructed u-WWTP) was assessed in detail regarding eco-environmental benefits. Our results showed that, the direct emission intensity of 65 WWTPs decreased from 0.47 to 0.24 kg CO2eq/m3, when the electricity intensity increased from 0.22 to 0.39 kWh/m3 from 2010 to 2020. Bishui u-WWTP emitted 36.6 kt CO2eq/year (0.09 kg CO2eq/m3), with electricity intensity of 0.43 kg CO2eq/m3. Additionally, compare to the hypothetical relocating scenario, it saved 6.67 × 104 m2 land and 33.0 kt CO2eq/year, and the created urban river carries 6.5 × 1013 J/year heat outside town. The evaluation and balance of choice for conventional or underground WWTP should be made case by case. However, this study demonstrated that u-WWTP is not only a construction manner, but a sustainable management model with positive eco-environment effects, algin with future city expansion, and circular economy visions.Water ManagementSanitary Engineerin
    corecore