1,475 research outputs found
"quasi-particles" in bosonization theory of interacting fermion liquids at arbitrary dimensions
Within bosonization theory we introduce in this paper a new definition of
"quasi-particles" for interacting fermions at arbitrary space dimenions. In
dimensions higher than one we show that the constructed quasi-particles are
consistent with quasi-particle descriptions in Landau Fermi liquid theory
whereas in one-dimension the quasi-particles" are non-perturbative objects
(spinons and holons) obeying fractional statistics. The more general situation
of Fermi liquids with singular Landau interaction is discussed.Comment: 10 page
Deflection of coronal rays by remote CMEs: shock wave or magnetic pressure?
We analyze five events of the interaction of coronal mass ejections (CMEs)
with the remote coronal rays located up to 90^\circ away from the CME as
observed by the SOHO/LASCO C2 coronagraph. Using sequences of SOHO/LASCO C2
images, we estimate the kink propagation in the coronal rays during their
interaction with the corresponding CMEs ranging from 180 to 920 km/s within the
interval of radial distances form 3 R. to 6 R. . We conclude that all studied
events do not correspond to the expected pattern of shock wave propagation in
the corona. Coronal ray deflection can be interpreted as the influence of the
magnetic field of a moving flux rope related to a CME. The motion of a
large-scale flux rope away from the Sun creates changes in the structure of
surrounding field lines, which are similar to the kink propagation along
coronal rays. The retardation of the potential should be taken into account
since the flux rope moves at high speed comparable with the Alfven speed.Comment: Accepted for Publication in Solar Physic
Granular Solid Hydrodynamics
Granular elasticity, an elasticity theory useful for calculating static
stress distribution in granular media, is generalized to the dynamic case by
including the plastic contribution of the strain. A complete hydrodynamic
theory is derived based on the hypothesis that granular medium turns
transiently elastic when deformed. This theory includes both the true and the
granular temperatures, and employs a free energy expression that encapsulates a
full jamming phase diagram, in the space spanned by pressure, shear stress,
density and granular temperature. For the special case of stationary granular
temperatures, the derived hydrodynamic theory reduces to {\em hypoplasticity},
a state-of-the-art engineering model.Comment: 42 pages 3 fi
Susceptibility Inhomogeneity and Non-Fermi-Liquid Behavior in Ce(Ru_{0.5}Rh_{0.5})_2Si_2
Magnetic susceptibility and muon spin rotation (\muSR) experiments have been
carried out to study the effect of structural disorder on the non-Fermi-liquid
(NFL) behavior of the heavy-fermion alloy Ce(Ru_{0.5}Rh_{0.5})_2Si_2. Analysis
of the bulk susceptibility in the framework of disorder-driven Griffiths-phase
and Kondo-disorder models for NFL behavior yields relatively narrow
distributions of characteristic spin fluctuation energies, in agreement with
\muSR linewidths that give the inhomogeneous spread in susceptibility. \muSR
and NMR data both indicate that disorder explains the "nearly NFL" behavior
observed above \sim2 K, but does not dominate the NFL physics found at low
temperatures and low magnetic fields.Comment: 6 pages, 4 figures, REVTeX, submitted to Phys. Rev.
Genetic vulnerability to diabetes and obesity: does education offset the risk?
The prevalence of type 2 diabetes (T2D) and obesity has recently increased dramatically. These common diseases are likely to arise from the interaction of multiple genetic, socio-demographic and environmental risk factors. While previous research has found genetic risk and education to be strong predictors of these diseases, few studies to date have examined their joint effects. This study investigates whether education modifies the association between genetic background and risk for type 2 diabetes (T2D) and obesity. Using data from non-Hispanic Whites in the Health and Retirement Study (HRS, n = 8398), we tested whether education modifies genetic risk for obesity and T2D, offsetting genetic effects; whether this effect is larger for individuals who have high risk for other (unobserved) reasons, i.e., at higher quantiles of HbA1c and BMI; and whether effects differ by gender. We measured T2D risk using Hemoglobin A1c (HbA1c) level, and obesity risk using body-mass index (BMI). We constructed separate genetic risk scores (GRS) for obesity and diabetes respectively based on the most current available information on the single nucleotide polymorphism (SNPs) confirmed as genome-wide significant predictors for BMI (29 SNPs) and diabetes risk (39 SNPs). Linear regression models with years of schooling indicate that the effect of genetic risk on HbA1c is smaller among people with more years of schooling and larger among those with less than a high school (HS) degree compared to HS degree-holders. Quantile regression models show that the GRS × education effect systematically increased along the HbA1c outcome distribution; for example the GRS × years of education interaction coefficient was −0.01 (95% CI = −0.03, 0.00) at the 10th percentile compared to −0.03 (95% CI = −0.07, 0.00) at the 90th percentile. These results suggest that education may be an important socioeconomic source of heterogeneity in responses to genetic vulnerability to T2D
Exact soliton solution and inelastic two-soliton collision in spin chain driven by a time-dependent magnetic field
We investigate dynamics of exact N-soliton trains in spin chain driven by a
time-dependent magnetic field by means of an inverse scattering transformation.
The one-soliton solution indicates obviously the spin precession around the
magnetic field and periodic shape-variation induced by the time varying field
as well. In terms of the general soliton solutions N-soliton interaction and
particularly various two-soliton collisions are analyzed. The inelastic
collision by which we mean the soliton shape change before and after collision
appears generally due to the time varying field. We, moreover, show that
complete inelastic collisions can be achieved by adjusting spectrum and field
parameters. This may lead a potential technique of shape control of soliton.Comment: 5 pages, 5 figure
A New Approach to the 3D Faddeev Equation for Three-Body Scattering
A novel approach to solve the Faddeev equation for three-body scattering at
arbitrary energies is proposed. This approach disentangles the complicated
singularity structure of the free three-nucleon propagator leading to the
moving and logarithmic singularities in standard treatments. The Faddeev
equation is formulated in momentum space and directly solved in terms of
momentum vectors without employing a partial wave decomposition. In its
simplest form the Faddeev equation for identical bosons, which we are using, is
an integral equation in five variables, magnitudes of relative momenta and
angles. The singularities of the free propagator and the deuteron propagator
are now both simple poles in two different momentum variables, and thus can
both be integrated with standard techniques.Comment: 8 pages, 1 figur
A Spin-Isospin Dependent 3N Scattering Formalism in a 3D Faddeev Scheme
We have introduced a spin-isospin dependent three-dimensional approach for
formulation of the three-nucleon scattering. Faddeev equation is expressed in
terms of vector Jacobi momenta and spin-isospin quantum numbers of each
nucleon. Our formalism is based on connecting the transition amplitude to
momentum-helicity representations of the two-body -matrix and the deuteron
wave function. Finally the expressions for nucleon-deuteron elastic scattering
and full breakup process amplitudes are presented.Comment: 17 page
Minisuperspace Quantization of "Bubbling AdS" and Free Fermion Droplets
We quantize the space of 1/2 BPS configurations of Type IIB SUGRA found by
Lin, Lunin and Maldacena (hep-th/0409174), directly in supergravity. We use the
Crnkovic-Witten-Zuckerman covariant quantization method to write down the
expression for the symplectic structure on this entire space of solutions. We
find the symplectic form explicitly around AdS_5 x S^5 and obtain a U(1)
Kac-Moody algebra, in precise agreement with the quantization of a system of N
free fermions in a harmonic oscillator potential, as expected from AdS/CFT. As
a cross check, we also perform the quantization around AdS_5 x S^5 by another
method, using the known spectrum of physical perturbations around this
background and find precise agreement with our previous calculation.Comment: 22 Pages + 2 Appendices, JHEP3; v3: explanation of factor 2 mismatch
added, references reordered, published versio
Axial vector current in an electromagnetic field and low-energy neutrino-photon interactions
An expression for the axial vector current in a strong, slowly varying
electromagnetic field is obtained. We apply this expression to the construction
of the effective action for low-energy neutrino-photon interactions.Comment: 6 pages, references updated, final version to appear in Phys. Rev.
- …