24 research outputs found

    Relationship between the structure and composition of rumen microorganisms and the digestibility of neutral detergent fibre in goats

    Get PDF
    Publication history: Accepted - 7 June 2018; Published online - 26 July 2018; Published print - January 2019.Objective: This experiment was conducted to compare the structure and composition of ruminal microorganisms in goats with high and low neutral detergent fibre (NDF) digestibility. Methods: Nineteen crossbred goats were used as experimental animals and fed the same total mixed rations during the 30-day pre-treatment and 6-day digestion trialperiods. All faeces were collected during the digestion period for measuring the NDF digestibility. Then, high and the low NDF digestibility individuals were chosen for the high NDF digestibility group (HFD) and low NDF digestibility group (LFD), respectively. Rumen contents were collected for total microbial DNA extraction. The V4 region of the bacterial 16S rRNA gene was amplified using universal primers of bacteria and sequenced using high-throughput sequencer. The sequences were mainly analysed by QIIME 1.8.0. Results: A total of 18,694 operational taxonomic units were obtained, within 81.98% belonged to bacteria, 6.64% belonged to archaea and 11.38% was unassigned microorganisms. Bacteroidetes, Firmicutes, and Proteobacteria were the predominant microbial phyla in both groups. At the genus level, the relative abundance of fifteen microorganisms were significantly higher (p<0.05) and six microorganisms were extremely significantly higher (p<0.01) in LFD than HFD. Overall, 176 core shared genera were identified in the two groups. The relative abundance of 2 phyla, 5 classes, 10 orders, 13 families and 15 genera had a negative correlation with NDF digestibility, but only the relative abundance of Pyramidobacter had a positive correlation with NDF digestibility. Conclusion: There were substantial differences in NDF digestibility among the individual goats, and the NDF digestibility had significant correlation with the relative abundance of some ruminal microorganisms.The authors would like to thank the National Key R&D Program of China (grant number: 2017YFD0502005) and Sichuan Beef Cattle Innovation Team (grant number: 035Z389) for the financial support

    Bacterial Community Diversity Associated With Different Utilization Efficiencies of Nitrogen in the Gastrointestinal Tract of Goats

    Get PDF
    The objective of this study was to examine the association between bacterial community structure and the utilization efficiency of nitrogen (UEN) phenotypes by determining the bacterial community in the gastrointestinal tract (GIT) of goats that differ in UEN using high-throughput 16S rRNA gene sequencing. Thirty Nubian goats were selected as experimental animals, and their UEN was determined in a metabolic experiment. Subsequently, eight individuals were grouped into the high nitrogen utilization (HNU) phenotype, and seven were grouped into the low nitrogen utilization (LNU) phenotype. The bacterial 16S rRNA gene amplicons from the rumen, abomasum, jejunum, cecum and colon contents of these animals were sequenced using next-generation high-throughput sequencing technology. Two hundred thirty-nine genera belonging to 23 phyla in the rumen, 319 genera belonging to 30 phyla in the abomasum, 248 genera belonging to 36 phyla in the jejunum, 248 genera belonging to 25 phyla in the colon and 246 genera belonging to 23 phyla in the cecum were detected, with Bacteroidetes and Firmicutes predominating. In addition, a significant correlation was observed between the UEN and the genera Succiniclasticum, Bacteroides, Ruminobacter, Methanimicrococcus, Mogibacterium, Eubacterium_hallii_group and Ruminococcus_1 in the rumen; Bacteroidales_S24-7_group, Bacteroidales_RF16_group, Bacteroidales_UCG-001 and Anaerovibrio in the abomasum; Ruminococcus_2, Candidatus_Saccharimonas, Candidatus_Arthromitus and Coprococcus_1 in the jejunum; Erysipelotrichaceae_UCG-004, Akkermansia, Senegalimassilia, Candidatus_Soleaferrea and Methanocorpusculum in the colon; and Ruminococcaceae_UCG-002, Anaerovibrio and Ruminococcaceae_UCG-007 in the cecum. Furthermore, the real-time PCR results showed that the ruminal copies of Fibrobacter_succinogenes, Butyrivibrio_fibrisolvens, Ruminococcus_sp._HUN007, Prevotella ruminicola and Streptococcus bovis in the HNU animals were significantly higher than those in the LNU animals. This study suggests an association of GIT microbial communities as a factor that influences UEN in goats

    A Novel Non-Volatile Inverter-based CiM: Continuous Sign Weight Transition and Low Power on-Chip Training

    Full text link
    In this work, we report a novel design, one-transistor-one-inverter (1T1I), to satisfy high speed and low power on-chip training requirements. By leveraging doped HfO2 with ferroelectricity, a non-volatile inverter is successfully demonstrated, enabling desired continuous weight transition between negative and positive via the programmable threshold voltage (VTH) of ferroelectric field-effect transistors (FeFETs). Compared with commonly used designs with the similar function, 1T1I uniquely achieves pure on-chip-based weight transition at an optimized working current without relying on assistance from off-chip calculation units for signed-weight comparison, facilitating high-speed training at low power consumption. Further improvements in linearity and training speed can be obtained via a two-transistor-one-inverter (2T1I) design. Overall, focusing on energy and time efficiencies, this work provides a valuable design strategy for future FeFET-based computing-in-memory (CiM)

    Analytical Nonstationary 3D MIMO Channel Model for Vehicle-to-Vehicle Communication on Slope

    No full text
    Vehicle-to-vehicle communication plays a strong role in modern wireless communication systems, appropriate channel models are of great importance in future research, and propagation environment with slope is one special kind. In this study, a novel three-dimensional nonstationary multiple-input multiple-output channel model for the sub-6 GHz band is proposed. This model is a regular-shaped multicluster geometry-based analytical model, and it combines the line-of-sight component and multicluster scattering rays as the nonline-of-sight components. Each cluster of scatterers represents the influence of different moving vehicles on or near a slope, and scatterers are, respectively, distributed within two spheres around the transmitter and the receiver. In this model, it is considered that the azimuth and elevation angles of departure and arrival are jointly distributed and conform to the von Mises–Fisher distribution, which can easily control the range and concentration of the scatterers within spheres to mimic the real-world situation well. Moreover, the impulse response and the autocorrelation function of the corresponding channel is derived and proposed; then, the Doppler power spectrum density of the channel is simulated and analyzed. In addition, the nonstationary characteristics of the presented channel model are observed through simulations. Finally, the simulation results are compared with measurement data in order to validate the utility of the proposed model

    Effect of friction stir processing on microstructures and mechanical properties of TIG cladding layer on AA7075

    No full text
    AA7075 is a precipitation strengthened Al-Zn-Mg-Cu alloy which has been widely used. As a common way to repair AA7075 components, tungsten inert gas (TIG) cladding generates coarse grains and defects. In addition, the use of other types of filler wires could lead to insufficient rigidity and strength of the cladding layer. In the present work, friction stir processing (FSP) has been applied to the TIG cladding layer on AA7075 to study the effect of process parameters on microstructures and mechanical properties. The macro/micro structural characteristics, elemental distribution, microhardness distribution and tensile properties have been investigated. The macroscopic defects in TIG cladding layer are eliminated and the size of grains is decreases to around 6 μ m by FSP. FSP reduces the compositional difference between the stir zone and the base material. Higher rotational speed promotes the grain refinement while the lower traverse speed benefits the microstructural uniformity. FSP on the TIG weld bead brings improvement in tensile properties and hardness. All the fractures for TIG + FSP samples occur at thermo-mechanically affected zone of the advancing side. The tensile strength of the stir zone increases from 424.2 to 442.8 MPa with the increase in rotational speed and traverse speed

    Effect of water cooling on microstructure and mechanical properties of friction stir welded dissimilar 2A12/6061 aluminum alloys

    No full text
    In-process cooling has been reported beneficial to some friction stir welded (FSW) aluminum alloys. But the effect of water cooling (WC) on the performance of dissimilar joints is still unclear. This work studies the effects of process parameters and water cooling on the microstructure and mechanical properties of the dissimilar 2A12-T6/6061-T6 FSW joints. Two rotational speeds (1200 and 1500 rpm) and one welding speed (80 mm min ^−1 ) were adopted. The macro/micro structural characteristics, microhardness distribution, tensile properties and fracture morphology have been investigated. The results show 2A12 on advancing side shows the higher plasticizing degree than 6061 during FSW. Cracks and tunnels are found in nugget zone (NZ) of 1200-80WC joint due to the poor fluidity of metals. The average grain size of NZ increases with the rotational speed and can be decreased by water cooling. For all of the joints, the lowest hardness positions locate in the heat affected zone of 6061. The effect of water cooling on hardness is found related to the nature of material and the rotational speed. The 1200-80 joint shows the best mechanical properties. Water cooling damages the mechanical properties of the 1200-80 joint by inducing void and crack defects. However, it enhances the strength of 1500-80 joint. The 1200-80WC joint fractures in NZ while others fracture in the positions with the lowest hardness. The fracture locations and morphology accord well with the microstructure, microhardness and tensile properties

    A Pruning Method for Deep Convolutional Network Based on Heat Map Generation Metrics

    No full text
    With the development of deep learning, researchers design deep network structures in order to extract rich high-level semantic information. Nowadays, most popular algorithms are designed based on the complexity of visible image features. However, compared with visible image features, infrared image features are more homogeneous, and the application of deep networks is prone to extracting redundant features. Therefore, it is important to prune the network layers where redundant features are extracted. Therefore, this paper proposes a pruning method for deep convolutional network based on heat map generation metrics. The &lsquo;network layer performance evaluation metrics&rsquo; are obtained from the number of pixel activations in the heat map. The network layer with the lowest &lsquo;network layer performance evaluation metrics&rsquo; is pruned. To address the problem that the simultaneous deletion of multiple structures may result in incorrect pruning, the Alternating training and self-pruning strategy is proposed. Using a cyclic process of pruning each model once and retraining the pruned model to reduce the incorrect pruning of network layers. The experimental results show that proposed method in this paper improved the performance of CSPDarknet, Darknet and Resnet

    The impact of diet on the composition and relative abundance of rumen microbes in goat

    No full text
    Objective This experiment was conducted to explore the impact of diet on the ruminal microbial community in goats. Methods Twelve goats were divided into two groups and fed complete feed (CF) or all forage (AF) diet. The total microbial DNAs in the rumen liquid were extracted. The V4 region of microbial 16S rRNA genes was amplified and sequenced using high-throughput. Information of sequences was mainly analyzed by QIIME 1.8.0. Results The results showed that Bacteroidetes and Firmicutes were the most predominant microbial phyla in the rumen of all goats. At genus level, the abundance of fiber-digesting bacteria such as Ruminococcus and Lachnospiracea incertae sedis was significantly higher in AF than that in CF, while the levels of fat-degrading bacterium Anaerovibrio and protein-degrading bacterium Pseudomonas were opposite. The core shared genera, Prevotella and Butyrivibrio were widespread in the rumen of goats and no significant difference was observed in relative abundance between groups. Conclusion We concluded that the richness of fiber-, protein-, and fat-digesting bacteria was affected by diet and tended to increase with the rise of their corresponding substrate contents in the ration; some bacteria shared by all goats maintained stable despite the difference in the ration, and they might be essential in maintaining the normal function of rumen

    Effects of Sugar Cane Molasses Addition on the Fermentation Quality, Microbial Community, and Tastes of Alfalfa Silage

    No full text
    The objective was to study the effects of sugar cane molasses addition on the fermentation quality and tastes of alfalfa silage. Fresh alfalfa was ensiled with no additive (Control), 1% molasses (M1), 2% molasses (M2), and 3% molasses (M3) for 206 days. The chemical composition and fermentation characteristics of the alfalfa silages were determined, the microbial communities were described by 16S rRNA sequencing, and the tastes were evaluated using an electronic tongue sensing system. With the amount of added molasses (M), most nutrition (dry matter and crude protein) was preserved and water-soluble carbohydrates (WSC) were sufficiently used to promote the fermentation, resulting in a pH reduction from 5.16 to 4.48. The lactic acid (LA) content and LA/acetic acid (AA) significantly increased, indicating that the fermentation had turned to homofermentation. After ensiling, Enterococcus and Lactobacillus were the dominant genus in all treatments and the undesirable microbes were inhibited, resulting in lower propionic acid (PA), butyric acid (BA), and NH3-N production. In addition, bitterness, astringency, and sourness reflected tastes of alfalfa silage, while umami and sourness changed with the amount of added molasses. Therefore, molasses additive had improved the fermentation quality and tastes of alfalfa silage, and the M3 group obtained the ideal pH value (below 4.5) and the best condition for long-term preservation

    Effects of Sugar Cane Molasses Addition on the Fermentation Quality, Microbial Community, and Tastes of Alfalfa Silage

    No full text
    The objective was to study the effects of sugar cane molasses addition on the fermentation quality and tastes of alfalfa silage. Fresh alfalfa was ensiled with no additive (Control), 1% molasses (M1), 2% molasses (M2), and 3% molasses (M3) for 206 days. The chemical composition and fermentation characteristics of the alfalfa silages were determined, the microbial communities were described by 16S rRNA sequencing, and the tastes were evaluated using an electronic tongue sensing system. With the amount of added molasses (M), most nutrition (dry matter and crude protein) was preserved and water-soluble carbohydrates (WSC) were sufficiently used to promote the fermentation, resulting in a pH reduction from 5.16 to 4.48. The lactic acid (LA) content and LA/acetic acid (AA) significantly increased, indicating that the fermentation had turned to homofermentation. After ensiling, Enterococcus and Lactobacillus were the dominant genus in all treatments and the undesirable microbes were inhibited, resulting in lower propionic acid (PA), butyric acid (BA), and NH3-N production. In addition, bitterness, astringency, and sourness reflected tastes of alfalfa silage, while umami and sourness changed with the amount of added molasses. Therefore, molasses additive had improved the fermentation quality and tastes of alfalfa silage, and the M3 group obtained the ideal pH value (below 4.5) and the best condition for long-term preservation
    corecore