5,937 research outputs found

    Topological Spin Texture in a Quantum Anomalous Hall Insulator

    Get PDF
    The quantum anomalous Hall (QAH) effect has been recently discovered in experiment using thin-film topological insulator with ferromagnetic ordering and strong spin-orbit coupling. Here we investigate the spin degree of freedom of a QAH insulator and uncover a fundamental phenomenon that the edge states exhibit topologically stable spin texture in the boundary when a chiral-like symmetry is present. This result shows that edge states are chiral in both the orbital and spin degrees of freedom, and the chiral edge spin texture corresponds to the bulk topological states of the QAH insulator. We also study the potential applications of the edge spin texture in designing topological-state-based spin devices which might be applicable to future spintronic technologies.Comment: 5 pages manuscript, 8+ pages supplementary information, 8 figures; published versio

    Safe Screening With Variational Inequalities and Its Application to LASSO

    Full text link
    Sparse learning techniques have been routinely used for feature selection as the resulting model usually has a small number of non-zero entries. Safe screening, which eliminates the features that are guaranteed to have zero coefficients for a certain value of the regularization parameter, is a technique for improving the computational efficiency. Safe screening is gaining increasing attention since 1) solving sparse learning formulations usually has a high computational cost especially when the number of features is large and 2) one needs to try several regularization parameters to select a suitable model. In this paper, we propose an approach called "Sasvi" (Safe screening with variational inequalities). Sasvi makes use of the variational inequality that provides the sufficient and necessary optimality condition for the dual problem. Several existing approaches for Lasso screening can be casted as relaxed versions of the proposed Sasvi, thus Sasvi provides a stronger safe screening rule. We further study the monotone properties of Sasvi for Lasso, based on which a sure removal regularization parameter can be identified for each feature. Experimental results on both synthetic and real data sets are reported to demonstrate the effectiveness of the proposed Sasvi for Lasso screening.Comment: Accepted by International Conference on Machine Learning 201

    Triggered massive and clustered stars formation by together H II regions G38.91-0.44 and G39.30-1.04

    Full text link
    We present the radio continuum, infrared, and CO molecular observations of infrared dark cloud (IRDC) G38.95-0.47 and its adjacent H II regions G38.91-0.44 (N74), G38.93-0.39 (N75), and G39.30-1.04. The Purple Mountain Observation (PMO) 13.7 m radio telescope was used to detect12CO J=1-0,13CO J=1-0 and C18O J=1-0 lines. The carbon monoxide (CO) molecular observations can ensure the real association between the ionized gas and the neutral material observed nearby. To select young stellar objects (YSOs) associated this region, we used the GLIMPSE I catalog. The13CO J=1-0 emission presents two large cloud clumps. The clump consistent with IRDC G38.95-0.47 shows a triangle- like shape, and has a steep integrated-intensity gradient toward H II regions G38.91-0.44 and G39.30-1.04, suggesting that the two H II regions have expanded into the IRDC. Four submillmeter continuum sources have been detected in the IRDC G38.95-0.47. Only the G038.95-00.47-M1 source with a mass of 117 Msun has outflow and infall motions, indicating a newly forming massive star. We detected a new collimated outflow in the clump compressed by G38.93-0.39. The derived ages of the three H II regions are 6.1*10^5yr, 2.5*10^5yr, and 9.0*10^5yr, respectively. In the IRDC G38.95-0.47, the significant enhancement of several Class I YSOs indicates the presence of some recently formed stars. Comparing the ages of these H II regions with YSOs (Class I sources and massive G038.95-00.47-M1 source), we suggest that YSOs may be triggered by G38.91-0.44 and G39.30-1.04 together, which supports the radiatively driven implosion model. It may be the first time that the triggered star formation has occurred in the IRDC compressed by two H II regions. The new detected outflow may be driven by a star cluster.Comment: 6 pages, 4 figures, Accepted for publication in A&
    • …
    corecore