66 research outputs found

    Cell responses to two kinds of nanohydroxyapatite with different sizes and crystallinities

    Get PDF
    Xiaochen Liu1, Minzhi Zhao1, Jingxiong Lu2, Jian Ma4, Jie Wei2, Shicheng Wei1,31Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 2Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 3Department of Oral and Maxillofacial Surgery, School of Stomatology, Peking University, Beijing, 4Hospital of Stomatology, Tongji University, Shanghai, ChinaIntroduction:Hydroxyapatite (HA) is the principal inorganic constituent of human bone. Due to its good biocompatibility and osteoconductivity, all kinds of HA particles were prepared by different methods. Numerous reports demonstrated that the properties of HA affected its biological effects.Methods: Two kinds of nanohydroxyapatite with different sizes and crystallinities were obtained via a hydrothermal treatment method under different temperatures. It was found that at a temperature of 140°C, a rod-like crystal (n-HA1) with a diameter of 23 ± 5 nm, a length of 47 ± 14 nm, and crystallinity of 85% ± 5% was produced, while at a temperature of 80°C, a rod-like crystal (n-HA2) with a diameter of 16 ± 3 nm, a length of 40 ± 10 nm, and crystallinity of 65% ± 3% was produced. The influence of nanohydroxyapatite size and crystallinity on osteoblast viability was studied by MTT, scanning electron microscopy, and flow cytometry.Results: n-HA1 gave a better biological response than n-HA2 in promoting cell growth and inhibiting cell apoptosis, and also exhibited much more active cell morphology. Alkaline phosphatase activity for both n-HA2 and n-HA1 was obviously higher than for the control, and no significant difference was found between n-HA1 and n-HA2. The same trend was observed on Western blotting for expression of type I collagen and osteopontin. In addition, it was found by transmission electron microscopy that large quantities of n-HA2 entered into the cell and damaged the cellular morphology. Release of tumor necrosis factor alpha from n-HA2 was markedly higher than from n-HA1, indicating that n-HA2 might trigger a severe inflammatory response.Conclusion: This work indicates that not all nanohydroxyapatite should be considered a good biomaterial in future clinical applications.Keywords: nanohydroxyapatite, osteoblast-like cells, cell viability, cell differentiatio

    Undoped Strained Ge Quantum Well with Ultrahigh Mobility Grown by Reduce Pressure Chemical Vapor Deposition

    Full text link
    We fabricate an undoped Ge quantum well under 30 nm Ge0.8Si0.2 shallow barrier with reverse grading technology. The under barrier is deposited by Ge0.8Si0.2 followed by Ge0.9Si0.1 so that the variation of Ge content forms a sharp interface which can suppress the threading dislocation density penetrating into undoped Ge quantum well. And the Ge0.8Si0.2 barrier introduces enough in-plane parallel strain -0.41% in the Ge quantum well. The heterostructure field-effect transistors with a shallow buried channel get a high two-dimensional hole gas (2DHG) mobility over 2E6 cm2/Vs at a low percolation density of 2.51 E-11 cm2. We also discover a tunable fractional quantum Hall effect at high densities and high magnetic fields. This approach defines strained germanium as providing the material basis for tuning the spin-orbit coupling strength for fast and coherent quantum computation.Comment: 11 pages, 5 figure

    Deciphering microbiomes dozens of meters under our feet and their edaphoclimatic and spatial drivers

    Get PDF
    24 páginas.- 7 figuras.- referenciasMicrobes inhabiting deep soil layers are known to be different from their counterpart in topsoil yet remain under investigation in terms of their structure, function, and how their diversity is shaped. The microbiome of deep soils (>1 m) is expected to be relatively stable and highly independent from climatic conditions. Much less is known, however, on how these microbial communities vary along climate gradients. Here, we used amplicon sequencing to investigate bacteria, archaea, and fungi along fifteen 18-m depth profiles at 20-50-cm intervals across contrasting aridity conditions in semi-arid forest ecosystems of China's Loess Plateau. Our results showed that bacterial and fungal α diversity and bacterial and archaeal community similarity declined dramatically in topsoil and remained relatively stable in deep soil. Nevertheless, deep soil microbiome still showed the functional potential of N cycling, plant-derived organic matter degradation, resource exchange, and water coordination. The deep soil microbiome had closer taxa-taxa and bacteria-fungi associations and more influence of dispersal limitation than topsoil microbiome. Geographic distance was more influential in deep soil bacteria and archaea than in topsoil. We further showed that aridity was negatively correlated with deep-soil archaeal and fungal richness, archaeal community similarity, relative abundance of plant saprotroph, and bacteria-fungi associations, but increased the relative abundance of aerobic ammonia oxidation, manganese oxidation, and arbuscular mycorrhizal in the deep soils. Root depth, complexity, soil volumetric moisture, and clay play bridging roles in the indirect effects of aridity on microbes in deep soils. Our work indicates that, even microbial communities and nutrient cycling in deep soil are susceptible to changes in water availability, with consequences for understanding the sustainability of dryland ecosystems and the whole-soil in response to aridification. Moreover, we propose that neglecting soil depth may underestimate the role of soil moisture in dryland ecosystems under future climate scenarios.This project was supported by the Joint Key Funds of the National Natural Science Foundation of China (U21A20237), the Strategic Priority Research Program of Chinese Academy of Sciences (XDB40020202). M.D.-B. acknowledges support from TED2021-130908B-C41/AEI/10.13039/501100011033/Unión Europea NextGenerationEU/PRTR and from the Spanish Ministry of Science and Innovation for the I + D + i project PID2020-115813RA-I00 funded by MCIN/AEI/10.13039/501100011033. R.O.H. was funded by the Ramón y Cajal program of the MICINN (RYC-2017 22032), by the R&D Project of the Ministry of Science and Innovation PID2019-106004RA-I00 funded by MCIN/AEI/10.13039/501100011033, and by the European Agricultural Fund for Rural Development (EAFRD) through the “Aid to operational groups of the European Association of Innovation (AEI) in terms of agricultural productivity and sustainability,” Reference: GOPC-CA-20-0001Peer reviewe

    Large-scale whole exome sequencing studies identify two genes,CTSL and APOE, associated with lung cancer.

    Get PDF
    Common genetic variants associated with lung cancer have been well studied in the past decade. However, only 12.3% heritability has been explained by these variants. In this study, we investigate the contribution of rare variants (RVs) (minor allele frequency <0.01) to lung cancer through two large whole exome sequencing case-control studies. We first performed gene-based association tests using a novel Bayes Factor statistic in the International Lung Cancer Consortium, the discovery study (European, 1042 cases vs. 881 controls). The top genes identified are further assessed in the UK Biobank (European, 630 cases vs. 172 864 controls), the replication study. After controlling for the false discovery rate, we found two genes, CTSL and APOE, significantly associated with lung cancer in both studies. Single variant tests in UK Biobank identified 4 RVs (3 missense variants) in CTSL and 2 RVs (1 missense variant) in APOE stongly associated with lung cancer (OR between 2.0 and 139.0). The role of these genetic variants in the regulation of CTSL or APOE expression remains unclear. If such a role is established, this could have important therapeutic implications for lung cancer patients

    Transient Simulation Study of Slip-Frequency Vector Control for Variable Speed Doubly-Fed Brushless Motor with Magnetic Barrier Rotor

    No full text
    In this paper, a transient simulation model of a variable speed doubly fed brushless motor (DFBM) using back-to-back converter is described. Based on analysis of rotor flux oriented vector control theory of doubly fed induction motor, the control of the currents in DFBM that produce the magnetic flux and the torque is achieved by a digital controller, the speed is regulated by a PI controller which is tuned by a genetic algorithm. According to the state equation of DFBM and the control schemes, the system simulation module is established in MATLAB/ SIMULINK. An extensive simulation study is performed to examine the control characteristics of the machine-side converter under different operation conditions in variable-speed DFBM driver system

    Structure Optimization and Performance Analysis of SRM with Amorphous Alloys Core using FEM

    No full text
    This paper presents the performance computation of three-phase 6/4 poles Switched Reluctance Motor (SRM) with amorphous alloy core using transient Finite Element Analysis (FEA) in which the magnetic field is combined with a driving circuit. In order to minimize torque ripple in SRM, this paper proposes not only optimal combination of stator pole arc and rotor pole arc but also the turn-on and turn-off angles using parameterized transient FEA and response surface methodology (RSM). The magnetic fields distribution, the winding flux linkage, the phase inductance curve, the iron losses and the torque characteristics of the prototype SRM at low-speed are investigated. All studies show that the prototype SRM is potential to apply in home appliance applications

    PM Design of IPMSM using Parameterized Finite Element Model

    No full text
    In this paper, a parameterized transient finite element model for permanent magnet (PM) dimension analysis and performance simulation of a V-shape interior permanent magnet synchronous motor (IPMSM) with 8 poles is developed. The relationships between induced electromotive force (EMF) and PM dimension, cogging torque and PM dimension are analyzed; the geometries of PM structure are optimized by performing response surface methodology (RSM); a new type of flux-barrier is designed to weaken the flux leakage, and the performances of the sample IPMSM are simulated. DOI: http://dx.doi.org/10.11591/telkomnika.v11i12.374

    Simulation of field oriented control in induction motor drive system

    No full text
    Abstract In this paper, a 3-phas

    Information-Theoretic Characterization and Undersampling Ratio Determination for Compressive Radar Imaging in a Simulated Environment

    No full text
    Assuming sparsity or compressibility of the underlying signals, compressed sensing or compressive sampling (CS) exploits the informational efficiency of under-sampled measurements for increased efficiency yet acceptable accuracy in information gathering, transmission and processing, though it often incurs extra computational cost in signal reconstruction. Shannon information quantities and theorems, such as source rate-distortion, trans-information and rate distortion theorem concerning lossy data compression, provide a coherent framework, which is complementary to classic CS theory, for analyzing informational quantities and for determining the necessary number of measurements in CS. While there exists some information-theoretic research in the past on CS in general and compressive radar imaging in particular, systematic research is needed to handle issues related to scene description in cluttered environments and trans-information quantification in complex sparsity-clutter-sampling-noise settings. The novelty of this paper lies in furnishing a general strategy for information-theoretic analysis of scene compressibility, trans-information of radar echo data about the scene and the targets of interest, respectively, and limits to undersampling ratios necessary for scene reconstruction subject to distortion given sparsity-clutter-noise constraints. A computational experiment was performed to demonstrate informational analysis regarding the scene-sampling-reconstruction process and to generate phase transition diagrams showing relations between undersampling ratios and sparsity-clutter-noise-distortion constraints. The strategy proposed in this paper is valuable for information-theoretic analysis and undersampling theorem developments in compressive radar imaging and other computational imaging applications
    • …
    corecore