19,558 research outputs found
Adaptive Temporal Encoding Network for Video Instance-level Human Parsing
Beyond the existing single-person and multiple-person human parsing tasks in
static images, this paper makes the first attempt to investigate a more
realistic video instance-level human parsing that simultaneously segments out
each person instance and parses each instance into more fine-grained parts
(e.g., head, leg, dress). We introduce a novel Adaptive Temporal Encoding
Network (ATEN) that alternatively performs temporal encoding among key frames
and flow-guided feature propagation from other consecutive frames between two
key frames. Specifically, ATEN first incorporates a Parsing-RCNN to produce the
instance-level parsing result for each key frame, which integrates both the
global human parsing and instance-level human segmentation into a unified
model. To balance between accuracy and efficiency, the flow-guided feature
propagation is used to directly parse consecutive frames according to their
identified temporal consistency with key frames. On the other hand, ATEN
leverages the convolution gated recurrent units (convGRU) to exploit temporal
changes over a series of key frames, which are further used to facilitate the
frame-level instance-level parsing. By alternatively performing direct feature
propagation between consistent frames and temporal encoding network among key
frames, our ATEN achieves a good balance between frame-level accuracy and time
efficiency, which is a common crucial problem in video object segmentation
research. To demonstrate the superiority of our ATEN, extensive experiments are
conducted on the most popular video segmentation benchmark (DAVIS) and a newly
collected Video Instance-level Parsing (VIP) dataset, which is the first video
instance-level human parsing dataset comprised of 404 sequences and over 20k
frames with instance-level and pixel-wise annotations.Comment: To appear in ACM MM 2018. Code link:
https://github.com/HCPLab-SYSU/ATEN. Dataset link: http://sysu-hcp.net/li
Generation of OAM Radio Waves with Three Polarizations Using Circular Horn Antenna Array
This paper provides an effective solution of generating OAM-carrying radio beams with all three polarizations: the linear, the left-hand circular, and the right-hand circular polarizations. Through reasonable configuration of phased antenna array using elements with three polarizations, the OAM radio waves with three polarizations for different states can be generated. The vectors of electric fields with different OAM states for all three polarizations are presented and analyzed in detail. The superposition of two coaxial OAM states is also carried out, and the general conclusion is provided
- …