9,708 research outputs found
Impact of Edge States on Device Performance of Phosphorene Heterojunction Tunneling Field Effect Transistors
Black phosphorus (BP) tunneling transistors (TFETs) using heterojunction (He)
are investigated by atomistic quantum transport simulations. It is observed
that edge states have a great impact on transport characteristics of BP
He-TFETs, which result in the potential pinning effect and deteriorate the gate
control. While, on-state current can be effectively enhanced by using hydrogen
to saturate the edge dangling bonds in BP He-TFETs, in which edge states are
quenched. By extending layered BP with a smaller band gap to the channel region
and modulating the BP thickness, device performance of BP He-TFETs can be
further optimized and fulfill the requirements of the international technology
road-map for semiconductors (ITRS) 2013 for low power applications. In 15 nm
3L-1L and 4L-1L BP He-TFETs along armchair direction on-state current can reach
above 10 A/m with the fixed off-state current of 10 m. It
is also found that ambipolar effect can be effectively suppressed in BP
He-TFETs.Comment: 12 pages, 5 figure
Locating influential nodes via dynamics-sensitive centrality
With great theoretical and practical significance, locating influential nodes
of complex networks is a promising issues. In this paper, we propose a
dynamics-sensitive (DS) centrality that integrates topological features and
dynamical properties. The DS centrality can be directly applied in locating
influential spreaders. According to the empirical results on four real networks
for both susceptible-infected-recovered (SIR) and susceptible-infected (SI)
spreading models, the DS centrality is much more accurate than degree,
-shell index and eigenvector centrality.Comment: 6 pages, 1 table and 2 figure
- …