4,830 research outputs found

    Phase Transition of Degeneracy in Minor-Closed Families

    Full text link
    Given an infinite family G{\mathcal G} of graphs and a monotone property P{\mathcal P}, an (upper) threshold for G{\mathcal G} and P{\mathcal P} is a "fastest growing" function p:N[0,1]p: \mathbb{N} \to [0,1] such that limnPr(Gn(p(n))P)=1\lim_{n \to \infty} \Pr(G_n(p(n)) \in {\mathcal P})= 1 for any sequence (Gn)nN(G_n)_{n \in \mathbb{N}} over G{\mathcal G} with limnV(Gn)=\lim_{n \to \infty}\lvert V(G_n) \rvert = \infty, where Gn(p(n))G_n(p(n)) is the random subgraph of GnG_n such that each edge remains independently with probability p(n)p(n). In this paper we study the upper threshold for the family of HH-minor free graphs and for the graph property of being (r1)(r-1)-degenerate, which is one fundamental graph property with many applications. Even a constant factor approximation for the upper threshold for all pairs (r,H)(r,H) is expected to be very difficult by its close connection to a major open question in extremal graph theory. We determine asymptotically the thresholds (up to a constant factor) for being (r1)(r-1)-degenerate for a large class of pairs (r,H)(r,H), including all graphs HH of minimum degree at least rr and all graphs HH with no vertex-cover of size at most rr, and provide lower bounds for the rest of the pairs of (r,H)(r,H). The results generalize to arbitrary proper minor-closed families and the properties of being rr-colorable, being rr-choosable, or containing an rr-regular subgraph, respectively

    The Interplay of Reovirus with Autophagy

    Get PDF
    Autophagy participates in multiple fundamental physiological processes, including survival, differentiation, development, and cellular homeostasis. It eliminates cytoplasmic protein aggregates and damaged organelles by triggering a series of events: sequestering the protein substrates into double-membrane vesicles, fusing the vesicles with lysosomes, and then degrading the autophagic contents. This degradation pathway is also involved in various disorders, for instance, cancers and infectious diseases. This paper provides an overview of modulation of autophagy in the course of reovirus infection and also the interplay of autophagy and reovirus

    Alternative Ingredient Recommendation: A Co-occurrence and Ingredient Category Importance Based Approach

    Get PDF
    As many people will refer to a recipe when cooking, there are several recipe-sharing websites that include lots of recipes and make recipes easier to access than before. However, there is often the case that we could not get all the ingredients listed on the recipe. Prior research on alternative ingredient substitution has built a recommendation system considering the suitability of a recommended ingredient with the remained ingredients. In this paper, in addition to suitability, we also take the diversity of the ingredient categories and the novelty of new combination of ingredients into account. Besides, we combine suitability with novelty as an index, to see whether our method could help find out a new combination of ingredients that is possibly to be a new dish. Our evaluation results show that our proposed method attains a comparable or even better performance on each perspective

    Explicit Change Relation Learning for Change Detection in VHR Remote Sensing Images

    Full text link
    Change detection has always been a concerned task in the interpretation of remote sensing images. It is essentially a unique binary classification task with two inputs, and there is a change relationship between these two inputs. At present, the mining of change relationship features is usually implicit in the network architectures that contain single-branch or two-branch encoders. However, due to the lack of artificial prior design for change relationship features, these networks cannot learn enough change semantic information and lose more accurate change detection performance. So we propose a network architecture NAME for the explicit mining of change relation features. In our opinion, the change features of change detection should be divided into pre-changed image features, post-changed image features and change relation features. In order to fully mine these three kinds of change features, we propose the triple branch network combining the transformer and convolutional neural network (CNN) to extract and fuse these change features from two perspectives of global information and local information, respectively. In addition, we design the continuous change relation (CCR) branch to further obtain the continuous and detail change relation features to improve the change discrimination capability of the model. The experimental results show that our network performs better, in terms of F1, IoU, and OA, than those of the existing advanced networks for change detection on four public very high-resolution (VHR) remote sensing datasets. Our source code is available at https://github.com/DalongZ/NAME
    corecore