33 research outputs found

    Combined CNN and RNN Neural Networks for GPR Detection of Railway Subgrade Diseases

    No full text
    Vehicle-mounted ground-penetrating radar (GPR) has been used to non-destructively inspect and evaluate railway subgrade conditions. However, existing GPR data processing and interpretation methods mostly rely on time-consuming manual interpretation, and limited studies have applied machine learning methods. GPR data are complex, high-dimensional, and redundant, in particular with non-negligible noises, for which traditional machine learning methods are not effective when applied to GPR data processing and interpretation. To solve this problem, deep learning is more suitable to process large amounts of training data, as well as to perform better data interpretation. In this study, we proposed a novel deep learning method to process GPR data, the CRNN network, which combines convolutional neural networks (CNN) and recurrent neural networks (RNN). The CNN processes raw GPR waveform data from signal channels, and the RNN processes features from multiple channels. The results show that the CRNN network achieves a higher precision at 83.4%, with a recall of 77.3%. Compared to the traditional machine learning method, the CRNN is 5.2 times faster and has a smaller size of 2.6 MB (traditional machine learning method: 104.0 MB). Our research output has demonstrated that the developed deep learning method improves the efficiency and accuracy of railway subgrade condition evaluation.Railway Engineerin

    One-step controllable fabrication of 3D structured self-standing Al<sub>3</sub>Ni<sub>2</sub>/Ni electrode through molten salt electrolysis for efficient water splitting

    No full text
    Exploring more efficient and low-cost electrocatalysts to replace platinum (Pt) is highly desired to promote the practical hydrogen production through water splitting. Herein, a facile and effective strategy is proposed to fabricate self-standing Al3Ni2/Ni electrode with controlled phase composition and surface morphology, which is obtained by one-step electrochemical reduction of Al3+ on commercially available nickel in eutectic NaCl-KCl melt. Different from previously reported approaches, uniform Al3Ni2 monolith catalyst can directly grow onto Ni substrate. The deposit possesses unique three-dimensional (3D) cauliflower-like morphology comprising of nano- and microparticles due to the rapid nucleation rate during molten salt electrolysis. The as-fabricated Al3Ni2/Ni electrode can be directly used as the cathode to catalyze Hydrogen evolution reaction (HER). Impressively, it exhibits remarkable HER activity comparable to commercial Pt, including a low overpotential of 83.4 mV for a current density of 10 mA cm−2, a small Tafel slope of 40.7 mV dec-1, and excellent long-term stability over 36 h of continuous HER operation in 0.5 M H2SO4 solution. The intrinsic catalytic ability of Al3Ni2 with the unique hierarchical structure of nano/microsized grains can offer multiple effects, including massive exposed active sites, enhanced charge transfer and mass transport, and fast gas releasing that synergistically contribute to improving the electrocatalytic performance of HER. This work represents a highly promising approach to the design and one-step controllable fabrication of efficient and self-standing base metal electrode for electrocatalytic hydrogen production.Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.Team Yongxiang Yan

    Extrinsic self-healing asphalt materials: A mini review

    No full text
    Self-healing is a biological phenomenon in which living organism responds to the suffered damage in a complex way. Inspired by the self-healing phenomenon in nature, various biomimetic healing methods rooted in intrinsic or extrinsic healing mechanisms have been explored. Research on novel self-healing asphalt materials with intelligent response is at the cutting-edge of materials science and offers a potential strategy for building long-life and low-carbon asphalt concrete infrastructure. This paper describes the progress of research on extrinsic self-healing asphalt materials and makes a clear distinction between intrinsic and extrinsic self-healing. The asphalt self-healing mechanism is interpreted by capillary flow theory, phase field theory, molecular diffusion theory and surface energy theory form various perspective. The extrinsic self-healing strategies including thermal induced healing and rejuvenator induced healing are proposed to enhance the healing level of cracked asphalt materials. A brief review of the methods including fracture-healing test and fatigue-healing test for assessing the efficacy of different extrinsic healing methods is presented. The thermal induced healing method bring high crack repair efficiency for asphalt concrete and the rejuvenator induced healing strategy not only improve the healing ratio of cracked asphalt concrete but also regenerate the ageing asphalt in situ. Important lessons for prospective research on the creation of novel self-healing asphalt materials are highlighted.Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.Materials and Environmen

    Morphological Examination and Phylogenetic Analyses of Phycopeltis spp. (Trentepohliales, Ulvophyceae) from Tropical China

    No full text
    During an investigation of Trentepohliales (Ulvophyceae) from tropical areas in China, four species of the genus Phycopeltis were identified: Phycopeltis aurea, P. epiphyton, P. flabellata and P. prostrata. The morphological characteristics of both young and adult thalli were observed and compared. Three species (P. flabellata, P. aurea and P. epiphyton) shared a symmetrical development with dichotomously branching vegetative cells during early stages; conversely, P. prostrata had dishevelled filaments with no dichotomously branching filaments and no symmetrical development. The adult thalli of the former three species shared common morphological characteristics, such as equally dichotomous filaments, absence of erect hair and gametangia formed in prostate vegetative filaments. Phylogenetic analyses based on SSU and ITS rDNA sequences showed that the three morphologically similar species were in a clade that was sister to a clade containing T. umbrina and T. abietina, thus confirming morphological monophyly. Conversely, Phycopeltis prostrata, a species with erect filaments, sessile gametangia on the basal erect hair, larger length/width ratio of vegetative cells and very loosely coalescent prostrate filaments, branched separately from the core Phycopeltis group and the T. umbrina and T. abietina clade. Based on morphological and molecular evidence, the genus Phycopeltis was paraphyletic. Furthermore, the traditional taxonomic criteria for Phycopeltis must be reassessed based on phylogeny using more species. A new circumscription of the Phycopeltis and the erection of new genera are recommended

    Dissipative Particle Dynamics (DPD): An Overview and Recent Developments

    No full text
    Dissipative particle dynamics (DPD) is a mesoscale particle method that bridges the gap between microscopic and macroscopic simulations. It can be regarded as a coarse-grained molecular dynamics method suitable for larger time and length scales. It has been successfully applied to different areas of interests, especially in modeling the hydrodynamic behavior of complex fluids in mesoscale. This paper presents an overview on DPD including the methodology, formulation, implementation procedure and some related numerical aspects. The paper also reviews the major applications of the DPD method, especially in modeling (1) micro drop dynamics, (2) multiphase flows in micro-channels and fracture networks, (3) movement and suspension of macromolecules in micro channels and (4) movement and deformation of single cells. The paper ends with some concluding remarks summarizing the major features and future possible development of this unique mesoscale modeling technique

    Life history traits and implications for conservation of rock carp Procypris rabaudi Tchang, an endemic fish in the upper Yangtze River, China

    No full text
    Rock carp is an endemic fish in the upper Yangtze River basin. Its populations have dramatically declined in the recent years due to human activities, such as overfishing and damming. In the present study, with the aim to give suggestions for better conservation, we investigated age, growth, and reproductive biology of the rock carp using samples collected between 2007 and 2013 from the Chishui River. The results indicate that there are no significant differences between the length-weight relationships of females and males (W = 0.015SL(3.155)). The von Bertalanffy growth curves computed by the observed length-at-age data could be expressed as L (t) = 64.9(1 - e(-0.101(t+0.217))). The estimated length at 50 % sexual maturity for males is 24.2 cm (approximately aged 4) and 37.0 cm for females. Female gonad analysis suggests that rock carp is a batch spawner, which can spawn at least twice during the reproductive season, from April to August. Standard length and age of 86.5 % individuals were below 25 cm and 4 years, respectively, indicating that the exploitation is too intensive and that populations are undergoing miniaturization. These data corroborate that a combination of natural and anthropogenic factors has caused a sharp decline in wild populations during recent years, calling for immediate design and implementation of conservation measures for this species

    Massive Trentepohlia-Bloom in a Glacier Valley of Mt. Gongga, China, and a New Variety of Trentepohlia (Chlorophyta)

    No full text
    Trentepohlia is a genus of subaerial green algae which is widespread in tropical, subtropical, and also temperate regions with humid climates. For many years, small-scale Trentepohlia coverage had been found on the rocks of some glacier valleys on the northern slopes of Mt. Gongga, China. However, since 2005, in the Yajiageng river valley, most of the rocks are covered with deep red coloured algal carpets, which now form a spectacular sight and a tourist attraction known as 'Red-Stone-Valley'. Based on morphology and molecular data, we have named this alga as a new variety: Trentepohlia jolithus var. yajiagengensis var. nov., it differs from the type variety in that its end cells of the main filament are often rhizoid, unilateral branches. This new variety only grows on the native rock, both global warming and human activity have provided massive areas of suitable substrata: the rocks surfaces of the Yajiageng river valley floodplain were re-exposed because of heavy debris flows in the summer of 2005; plus human activities such as tourism and road-building have also created a lot of exposed rock! In summer, the glaciers of the northern slopes of Mt. Gongga have brought to the valleys wet and foggy air, ideal for Trentepohlia growth. The cells of the new variety are rich in secondary carotenoids (astaxanthin?), which helps the algal cells resistance to strong ultraviolet radiation at high altitudes (they are only found on rock surfaces at alt. 1900-3900 m); the cells are also rich in oils, which gives them high resistance to cold dry winters.Trentepohlia is a genus of subaerial green algae which is widespread in tropical, subtropical, and also temperate regions with humid climates. For many years, small-scale Trentepohlia coverage had been found on the rocks of some glacier valleys on the northern slopes of Mt. Gongga, China. However, since 2005, in the Yajiageng river valley, most of the rocks are covered with deep red coloured algal carpets, which now form a spectacular sight and a tourist attraction known as 'Red-Stone-Valley'. Based on morphology and molecular data, we have named this alga as a new variety: Trentepohlia jolithus var. yajiagengensis var. nov., it differs from the type variety in that its end cells of the main filament are often rhizoid, unilateral branches. This new variety only grows on the native rock, both global warming and human activity have provided massive areas of suitable substrata: the rocks surfaces of the Yajiageng river valley floodplain were re-exposed because of heavy debris flows in the summer of 2005; plus human activities such as tourism and road-building have also created a lot of exposed rock! In summer, the glaciers of the northern slopes of Mt. Gongga have brought to the valleys wet and foggy air, ideal for Trentepohlia growth. The cells of the new variety are rich in secondary carotenoids (astaxanthin?), which helps the algal cells resistance to strong ultraviolet radiation at high altitudes (they are only found on rock surfaces at alt. 1900-3900 m); the cells are also rich in oils, which gives them high resistance to cold dry winters

    Improved Methodology for Identification of Cryptomonads: Combining Light Microscopy and PCR Amplification

    No full text
    Cryptomonads are unicellular, biflagellate algae. Generally, cryptomonad cells cannot be preserved well because of their fragile nature, and an improved methodology should be developed to identify cryptomonads from natural habitats. In this study, we tried using several cytological fixatives, including glutaraldehyde, formaldehyde, and their combinations to preserve field samples collected from various waters, and the currently used fixative, Lugol&#39;s solution was tested for comparison. Results showed that among the fixatives tested, glutaraldehyde preserved the samples best, and the optimal concentration of glutaraldehyde was 2%. The cell morphology was well preserved by glutaraldehyde. Cells kept their original color, volume, and shape, and important taxonomic features such as furrow/gullet complex, ejectosomes, as well as flagella could be observed clearly, whereas these organelles frequently disappeared in Lugol&#39;s solution preserved samples. The osmotic adjustments and buffers tested could not preserve cell density significantly higher. Statistical calculation showed the cell density in the samples preserved by 2% glutaraldehyde remained stable after 43 days of the fixation procedure. In addition, DNA was extracted from glutaraldehyde preserved samples by grinding with liquid nitrogen and the 18S rDNA sequence was amplified by PCR. The sequence was virtually identical to the reference sequence, and phylogenetic analyses showed very close relationship between it and sequences from the same organism. To sum up, the present study demonstrated that 2% unbuffered glutaraldehyde, without osmotic adjustments, can preserve cryptomonads cells for identification, in terms of both light microscopy and phylogenetic analyses based on DNA sequences.Cryptomonads are unicellular, biflagellate algae. Generally, cryptomonad cells cannot be preserved well because of their fragile nature, and an improved methodology should be developed to identify cryptomonads from natural habitats. In this study, we tried using several cytological fixatives, including glutaraldehyde, formaldehyde, and their combinations to preserve field samples collected from various waters, and the currently used fixative, Lugol's solution was tested for comparison. Results showed that among the fixatives tested, glutaraldehyde preserved the samples best, and the optimal concentration of glutaraldehyde was 2%. The cell morphology was well preserved by glutaraldehyde. Cells kept their original color, volume, and shape, and important taxonomic features such as furrow/gullet complex, ejectosomes, as well as flagella could be observed clearly, whereas these organelles frequently disappeared in Lugol's solution preserved samples. The osmotic adjustments and buffers tested could not preserve cell density significantly higher. Statistical calculation showed the cell density in the samples preserved by 2% glutaraldehyde remained stable after 43 days of the fixation procedure. In addition, DNA was extracted from glutaraldehyde preserved samples by grinding with liquid nitrogen and the 18S rDNA sequence was amplified by PCR. The sequence was virtually identical to the reference sequence, and phylogenetic analyses showed very close relationship between it and sequences from the same organism. To sum up, the present study demonstrated that 2% unbuffered glutaraldehyde, without osmotic adjustments, can preserve cryptomonads cells for identification, in terms of both light microscopy and phylogenetic analyses based on DNA sequences

    Phylogenetic position of Jaoa, a green algal genus endemic to China

    No full text
    Jaoa prasina, a freshwater green alga endemic to China, was collected from a stream in Hubei province, China. Unialgal cultivation, morphological observation, and phylogenetic analyses of small subunit ribosomal DNA and RuBisCO large subunit sequences were performed. When cultured on agar medium, the alga was irregularly filamentous, similar to marine species of Acrochaete. Aplanospores were observed on solid medium. A vesicular-like thallus without rhizoids developed in liquid medium, similar to specimen development in natural habitats. Molecular phylogenetic analyses revealed that Jaoa was closely related to the marine genera AcrochaetePringsheim and UlvellaCrouan & Crouan. The results suggested the genus Jaoa is a member of the family Ulvellaceae (Ulvophyceae), which contains mostly marine algae. The family name Jaoaceae should be abandoned. We speculate that Jaoa may have evolved from a marine Ulvellaceae ancestor.Jaoa prasina, a freshwater green alga endemic to China, was collected from a stream in Hubei province, China. Unialgal cultivation, morphological observation, and phylogenetic analyses of small subunit ribosomal DNA and RuBisCO large subunit sequences were performed. When cultured on agar medium, the alga was irregularly filamentous, similar to marine species of Acrochaete. Aplanospores were observed on solid medium. A vesicular-like thallus without rhizoids developed in liquid medium, similar to specimen development in natural habitats. Molecular phylogenetic analyses revealed that Jaoa was closely related to the marine genera AcrochaetePringsheim and UlvellaCrouan & Crouan. The results suggested the genus Jaoa is a member of the family Ulvellaceae (Ulvophyceae), which contains mostly marine algae. The family name Jaoaceae should be abandoned. We speculate that Jaoa may have evolved from a marine Ulvellaceae ancestor

    Occurrence of true branches in Rhizoclonium (Cladophorales, Ulvophyceae) and the reinstatement of Rhizoclonium pachydermum Kjellman

    No full text
    The phylogenetic position of the freshwater green alga Rhizoclonium pachydermum ( Ulvophyceae: Cladophorales) was investigated using nuclear 18S rRNA gene and internal transcribed spacer 2 ( ITS2) sequences. This alga has been referred to as Cladophora pachyderma. Based on its morphology, it was formerly classified in the section Affines in the genus Cladophora. However, this classification was not supported by the current phylogenetic analyses, where Rhizoclonium pachydermum formed a well-supported clade with other Rhizoclonium species. We consider that Rhizoclonium possesses real branches and the most important criteria that characterize the genus are: long unbranched filaments only with rhizoid branches, or only branched at the basal region of the thallus; and cylindrical cells with few or limited numbers of nuclei.The phylogenetic position of the freshwater green alga Rhizoclonium pachydermum ( Ulvophyceae: Cladophorales) was investigated using nuclear 18S rRNA gene and internal transcribed spacer 2 ( ITS2) sequences. This alga has been referred to as Cladophora pachyderma. Based on its morphology, it was formerly classified in the section Affines in the genus Cladophora. However, this classification was not supported by the current phylogenetic analyses, where Rhizoclonium pachydermum formed a well-supported clade with other Rhizoclonium species. We consider that Rhizoclonium possesses real branches and the most important criteria that characterize the genus are: long unbranched filaments only with rhizoid branches, or only branched at the basal region of the thallus; and cylindrical cells with few or limited numbers of nuclei
    corecore