135 research outputs found

    Spatial and temporal patterns of carbon emissions from forest fires in China from 1950 to 2000

    Get PDF
    Author Posting. © American Geophysical Union, 2006. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 111 (2006): D05313, doi:10.1029/2005JD006198.We have estimated the emission of carbon (C) and carbon-containing trace gases including CO2, CO, CH4, and NMHC (nonmethane hydrocarbons) from forest fires in China for the time period from 1950 to 2000 by using a combination of remote sensing, forest fire inventory, and terrestrial ecosystem modeling. Our results suggest that mean annual carbon emission from forest fires in China is about 11.31 Tg per year, ranging from a minimum level of 8.55 Tg per year to a maximum level of 13.9 Tg per year. This amount of carbon emission is resulted from the atmospheric emissions of four trace gases as follows: (1) 40.66 Tg CO2 with a range from 29.21 to 47.53 Tg, (2) 2.71 Tg CO with a range from 1.48 to 4.30 Tg, (3) 0.112 Tg CH4 with a range from 0.06 to 0.2 Tg, and (4) 0.113 Tg NMHC with a range from 0.05 to 0.19 Tg. Our study indicates that fire-induced carbon emissions show substantial interannual and decadal variations before 1980 but have remained relatively low and stable since 1980 because of the application of fire suppression. Large spatial variation in fire-induced carbon emissions exists due to the spatial variability of climate, forest types, and fire regimes.This work has been supported by NASA Interdisciplinary Science Program (NNG04GM39C), China’s Ministry of Science and Technology (MOST) 973 Program (2002CB412500), Chinese Academy of Sciences ODS Program, and NSFC International Cooperative Program (40128005)

    Towards Constituting Mathematical Structures for Learning to Optimize

    Full text link
    Learning to Optimize (L2O), a technique that utilizes machine learning to learn an optimization algorithm automatically from data, has gained arising attention in recent years. A generic L2O approach parameterizes the iterative update rule and learns the update direction as a black-box network. While the generic approach is widely applicable, the learned model can overfit and may not generalize well to out-of-distribution test sets. In this paper, we derive the basic mathematical conditions that successful update rules commonly satisfy. Consequently, we propose a novel L2O model with a mathematics-inspired structure that is broadly applicable and generalized well to out-of-distribution problems. Numerical simulations validate our theoretical findings and demonstrate the superior empirical performance of the proposed L2O model.Comment: ICML 202

    Contribution of increasing CO2 and climate change to the carbon cycle in China\u27s ecosystems

    Get PDF
    Atmospheric CO2 and China\u27s climate have changed greatly during 1961–2000. The influence of increased CO2 and changing climate on the carbon cycle of the terrestrial ecosystems in China is still unclear. In this article we used a process-based ecosystem model, Biome-BGC, to assess the effects of changing climate and elevated atmospheric CO2 on terrestrial China\u27s carbon cycle during two time periods: (1) the present (1961–2000) and (2) a future with projected climate change under doubled CO2 (2071–2110). The effects of climate change alone were estimated by driving Biome-BGC with a fixed CO2 concentration and changing climate, while the CO2 fertilization effects were calculated as the difference between the results driven by both increasing CO2 and changing climate and those of variable climate alone. Model simulations indicate that during 1961–2000 at the national scale, changes in climate reduced carbon storage in China\u27s ecosystems, but increasing CO2 compensated for these adverse effects of climate change, resulting in an overall increase in the carbon storage of China\u27s ecosystems despite decreases in soil carbon. The interannual variability of the carbon cycle was associated with climate variations. Regional differences in climate change produced differing regional carbon uptake responses. Spatially, reductions in carbon in vegetation and soils and increases in litter carbon were primarily caused by climate change in most parts of east China, while carbon in vegetation, soils, and litter increased for much of west China. Under the future scenario (2071–2110), with a doubling CO2, China will experience higher precipitation and temperature as predicted by the Hadley Centre HadCM3 for the Intergovernmental Panel on Climate Change Fourth Assessment. The concomitant doubling of CO2 will continue to counteract the negative effects of climate change on carbon uptake in the future, leading to an increase in carbon storage relative to current levels. This study highlights the role of CO2 fertilization in the carbon budget of China\u27s ecosystems, although future studies should include other important processes such as land use change, human management (e.g., fertilization and irrigation), environmental pollution, etc

    Evaluating water stress controls on primary production in biogeochemical and remote sensing based models

    Get PDF
    Water stress is one of the most important limiting factors controlling terrestrial primary production, and the performance of a primary production model is largely determined by its capacity to capture environmental water stress. The algorithm that generates the global near-real-time MODIS GPP/NPP products (MOD17) uses VPD (vapor pressure deficit) alone to estimate the environmental water stress. This paper compares the water stress calculation in the MOD17 algorithm with results simulated using a process-based biogeochemical model (Biome-BGC) to evaluate the performance of the water stress determined using the MOD17 algorithm. The investigation study areas include China and the conterminous United States because of the availability of daily meteorological observation data. Our study shows that VPD alone can capture interannual variability of the full water stress nearly over all the study areas. In wet regions, where annual precipitation is greater than 400 mm/yr, the VPD-based water stress estimate in MOD17 is adequate to explain the magnitude and variability of water stress determined from atmospheric VPD and soil water in Biome-BGC. In some dry regions, where soil water is severely limiting, MOD17 underestimates water stress, overestimates GPP, and fails to capture the intraannual variability of water stress. The MOD17 algorithm should add soil water stress to its calculations in these dry regions, thereby improving GPP estimates. Interannual variability in water stress is simpler to capture than the seasonality, but it is more difficult to capture this interannual variability in GPP. The MOD17 algorithm captures interannual and intraannual variability of both the Biome-BGC-calculated water stress and GPP better in the conterminous United States than in the strongly monsoon-controlled China

    Projecting terrestrial carbon sequestration of the southeastern United States in the 21st century

    Get PDF
    How terrestrial ecosystems respond to future environmental change in the 21st century is critically important for understanding the feedbacks of terrestrial ecosystems to global climate change. The southeastern United States (SEUS) has been one of the major regions acting as a carbon sink over the past century; yet it is unclear how its terrestrial ecosystems will respond to global environmental change in the 21st century. Applying a process-based ecosystem model (Dynamic Land Ecosystem Model, DLEM) in combination with three projected climate change scenarios (A1B, A2, and B1 from the IPCC report) and changes in atmospheric carbon dioxide, nitrogen deposition, and ozone pollution, we examined the potential changes of carbon storage and fluxes in the terrestrial ecosystems across the SEUS during 2000–2099. Simulation results indicate that SEUS\u27s terrestrial ecosystems will likely continue to sequester carbon in the 21st century, resulting in an increase in total carbon density (i.e., litter, vegetation biomass and soil carbon) from 13.5 kg C/m2 in the 2000s to 16.8 kg C/m2 in the 2090s. The terrestrial gross primary production and net primary production will probably continuously increase, while the net carbon exchange (positive indicates sink and negative indicates source) will slightly decrease. The carbon sequestration is primarily attributed to elevated atmospheric carbon dioxide and nitrogen deposition. Forests, including both deciduous and evergreen, show the largest increase in carbon storage as compared with other biomes, while cropland carbon storage shows a small decrease. The sequestered carbon will be primarily stored in vegetation for deciduous forest and in soil for evergreen forest. The central and eastern SEUS will sequester more carbon, while the western portion of the SEUS will release carbon to the atmosphere. The combined effects of climate and atmospheric changes on carbon fluxes and storage vary among climate models and climate scenarios. The largest increase in carbon storage would occur under the A1B climate scenario simulated by the NCAR climate model. Generally, the A1B scenario would result in more carbon sequestration than A2 and B1 scenarios; and the projected climate condition by the NCAR model would result in more carbon sequestration than other climate models

    RESEARCH

    Get PDF
    Impacts of tropospheric ozone and climate change on net primary productivity and net carbon exchange of China’s forest ecosystemsgeb_606 391..40

    Engineered Mutants of a Marine Photosynthetic Purple Nonsulfur Bacterium with Increased Volumetric Productivity of Polyhydroxyalkanoate Bioplastics

    Get PDF
    Polyhydroxyalkanoates (PHAs) are green and sustainable bioplastics that could replace petrochemical synthetic plastics without posing environmental threats to living organisms. In addition, sustainable PHA production could be achieved using marine photosynthetic purple nonsulfur bacteria (PNSBs) that utilize natural seawater, sunlight, carbon dioxide gas, and nitrogen gas for growth. However, PHA production using marine photosynthetic PNSBs has not been economically feasible yet due to its high cost and low productivity. In this work, strain improvement, using genome-wide mutagenesis coupled with high-throughput screening via fluorescence-activated cell sorting, we were able to create Rhodovulum sulfidophilum mutants with enhanced volumetric PHA productivity, with an up to 1.7-fold increase. The best selected mutants (E6 and E6M4) reached the stationary growth phase 1 day faster and accumulated the maximum PHA content 2 days faster than the wild type. Maximizing volumetric PHA productivity before the stationary growth phase is indeed an additional advantage for R. sulfidophilum as a growth-associated PHA producer

    Effects of tropospheric ozone pollution on net primary productivity and carbon storage in terrestrial ecosystems of China

    Get PDF
    Author Posting. © American Geophysical Union, 2007. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 112 (2007): D22S09, doi:10.1029/2007JD008521.We investigated the potential effects of elevated ozone (O3) along with climate variability, increasing CO2, and land use change on net primary productivity (NPP) and carbon storage in China's terrestrial ecosystems for the period 1961–2000 with a process-based Dynamic Land Ecosystem Model (DLEM) forced by the gridded data of historical tropospheric O3 and other environmental factors. The simulated results showed that elevated O3 could result in a mean 4.5% reduction in NPP and 0.9% reduction in total carbon storage nationwide from 1961 to 2000. The reduction of carbon storage varied from 0.1 Tg C to 312 Tg C (a decreased rate ranging from 0.2% to 6.9%) among plant functional types. The effects of tropospheric O3 on NPP were strongest in east-central China. Significant reductions in NPP occurred in northeastern and central China where a large proportion of cropland is distributed. The O3 effects on carbon fluxes and storage are dependent upon other environmental factors. Therefore direct and indirect effects of O3, as well as interactive effects with other environmental factors, should be taken into account in order to accurately assess the regional carbon budget in China. The results showed that the adverse influences of increasing O3 concentration across China on NPP could be an important disturbance factor on carbon storage in the near future, and the improvement of air quality in China could enhance the capability of China's terrestrial ecosystems to sequester more atmospheric CO2. Our estimation of O3 impacts on NPP and carbon storage in China, however, must be used with caution because of the limitation of historical tropospheric O3 data and other uncertainties associated with model parameters and field experiments.This research is funded by NASA Interdisciplinary Science Program (NNG04GM39C)

    China's terrestrial carbon balance : contributions from multiple global change factors

    Get PDF
    Author Posting. © American Geophysical Union, 2011. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 25 (2011): GB1007, doi:10.1029/2010GB003838.The magnitude, spatial, and temporal patterns of the terrestrial carbon sink and the underlying mechanisms remain uncertain and need to be investigated. China is important in determining the global carbon balance in terms of both carbon emission and carbon uptake. Of particular importance to climate-change policy and carbon management is the ability to evaluate the relative contributions of multiple environmental factors to net carbon source and sink in China's terrestrial ecosystems. Here the effects of multiple environmental factors (climate, atmospheric CO2, ozone pollution, nitrogen deposition, nitrogen fertilizer application, and land cover/land use change) on net carbon balance in terrestrial ecosystems of China for the period 1961–2005 were modeled with newly developed, detailed historical information of these changes. For this period, results from two models indicated a mean land sink of 0.21 Pg C per year, with a multimodel range from 0.18 to 0.24 Pg C per year. The models' results are consistent with field observations and national inventory data and provide insights into the biogeochemical mechanisms responsible for the carbon sink in China's land ecosystems. In the simulations, nitrogen deposition and fertilizer applications together accounted for 61 percent of the net carbon storage in China's land ecosystems in recent decades, with atmospheric CO2 increases and land use also functioning to stimulate carbon storage. The size of the modeled carbon sink over the period 1961–2005 was reduced by both ozone pollution and climate change. The modeled carbon sink in response to per unit nitrogen deposition shows a leveling off or a decline in some areas in recent years, although the nitrogen input levels have continued to increase.This study has been supported by NASA IDS Program (NNG04GM39C), NASA LCLUC Pr o g ram (NNX08AL73G_S01), and China’s Ministry of Science and Technology (MOST) 973 Program (2002CB412500)
    corecore