168 research outputs found

    Query Processing In Location-based Services

    Get PDF
    With the advances in wireless communication technology and advanced positioning systems, a variety of Location-Based Services (LBS) become available to the public. Mobile users can issue location-based queries to probe their surrounding environments. One important type of query in LBS is moving monitoring queries over mobile objects. Due to the high frequency in location updates and the expensive cost of continuous query processing, server computation capacity and wireless communication bandwidth are the two limiting factors for large-scale deployment of moving object database systems. To address both of the scalability factors, distributed computing has been considered. These schemes enable moving objects to participate as a peer in query processing to substantially reduce the demand on server computation, and wireless communications associated with location updates. In the first part of this dissertation, we propose a distributed framework to process moving monitoring queries over moving objects in a spatial network environment. In the second part of this dissertation, in order to reduce the communication cost, we leverage both on-demand data access and periodic broadcast to design a new hybrid distributed solution for moving monitoring queries in an open space environment. Location-based services make our daily life more convenient. However, to receive the services, one has to reveal his/her location and query information when issuing locationbased queries. This could lead to privacy breach if these personal information are possessed by some untrusted parties. In the third part of this dissertation, we introduce a new privacy protection measure called query l-diversity, and provide two cloaking algorithms to achieve both location kanonymity and query l-diversity to better protect user privacy. In the fourth part of this dissertation, we design a hybrid three-tier architecture to help reduce privacy exposure. In the fifth part of this dissertation, we propose to use Road Network Embedding technique to process privacy protected queries

    Attitude-Tracking Control with Path Planning for Agile Satellite Using Double-Gimbal Control Moment Gyros

    Get PDF
    In view of the issue of rapid attitude maneuver control of agile satellite, this paper presents an attitude-tracking control algorithm with path planning based on the improved genetic algorithm, adaptive backstepping control as well as sliding mode control. The satellite applies double gimbal control moment gyro as actuator and is subjected to the external disturbance and uncertain inertia properties. Firstly, considering the comprehensive mathematical model of the agile satellite and the double gimbal control moment gyro, an improved genetic algorithm is proposed to solve the attitude path-planning problem. The goal is to find an energy optimal path which satisfies certain maneuverability under the constraints of the input saturation, actuator saturation, slew rate limit and singularity measurement limit. Then, the adaptive backstepping control and sliding mode control are adopted in the design of the attitude-tracking controller to track accurately the desired path comprised of the satellite attitude quaternion and velocity. Finally, simulation results indicate the robustness and good tracking performance of the derived controller as well as its ability to avert the singularity of double gimbal control moment gyro

    Exponentially weighted particle filter for simultaneous localization and mapping based on magnetic field measurements

    Get PDF
    This paper presents a simultaneous localization and mapping (SLAM) method that utilizes the measurement of ambient magnetic fields present in all indoor environments. In this paper, an improved exponentially weighted particle filter was proposed to estimate the pose distribution of the object and a Kriging interpolation method was introduced to update the map of the magnetic fields. The performance and effectiveness of the proposed algorithms were evaluated by simulations on MATLAB based on a map with magnetic fields measured manually in an indoor environment and also by tests on the mobile devices in the same area. From the tests, two interesting phenomena have been discovered; one is the shift of location estimation after sharp turning and the other is the accumulated errors. While the latter has been confirmed and investigated by a few researchers, the reason for the first one still remains unknown. The tests also confirm that the interpolated map by using the proposed method improves the localization accuracy

    Delving into E-Commerce Product Retrieval with Vision-Language Pre-training

    Full text link
    E-commerce search engines comprise a retrieval phase and a ranking phase, where the first one returns a candidate product set given user queries. Recently, vision-language pre-training, combining textual information with visual clues, has been popular in the application of retrieval tasks. In this paper, we propose a novel V+L pre-training method to solve the retrieval problem in Taobao Search. We design a visual pre-training task based on contrastive learning, outperforming common regression-based visual pre-training tasks. In addition, we adopt two negative sampling schemes, tailored for the large-scale retrieval task. Besides, we introduce the details of the online deployment of our proposed method in real-world situations. Extensive offline/online experiments demonstrate the superior performance of our method on the retrieval task. Our proposed method is employed as one retrieval channel of Taobao Search and serves hundreds of millions of users in real time.Comment: 5 pages, 4 figures, accepted to SIRIP 202

    ATBRG: Adaptive Target-Behavior Relational Graph Network for Effective Recommendation

    Full text link
    Recommender system (RS) devotes to predicting user preference to a given item and has been widely deployed in most web-scale applications. Recently, knowledge graph (KG) attracts much attention in RS due to its abundant connective information. Existing methods either explore independent meta-paths for user-item pairs over KG, or employ graph neural network (GNN) on whole KG to produce representations for users and items separately. Despite effectiveness, the former type of methods fails to fully capture structural information implied in KG, while the latter ignores the mutual effect between target user and item during the embedding propagation. In this work, we propose a new framework named Adaptive Target-Behavior Relational Graph network (ATBRG for short) to effectively capture structural relations of target user-item pairs over KG. Specifically, to associate the given target item with user behaviors over KG, we propose the graph connect and graph prune techniques to construct adaptive target-behavior relational graph. To fully distill structural information from the sub-graph connected by rich relations in an end-to-end fashion, we elaborate on the model design of ATBRG, equipped with relation-aware extractor layer and representation activation layer. We perform extensive experiments on both industrial and benchmark datasets. Empirical results show that ATBRG consistently and significantly outperforms state-of-the-art methods. Moreover, ATBRG has also achieved a performance improvement of 5.1% on CTR metric after successful deployment in one popular recommendation scenario of Taobao APP.Comment: Accepted by SIGIR 2020, full paper with 10 pages and 5 figure

    MTBRN: Multiplex Target-Behavior Relation Enhanced Network for Click-Through Rate Prediction

    Full text link
    Click-through rate (CTR) prediction is a critical task for many industrial systems, such as display advertising and recommender systems. Recently, modeling user behavior sequences attracts much attention and shows great improvements in the CTR field. Existing works mainly exploit attention mechanism based on embedding product when considering relations between user behaviors and target item. However, this methodology lacks of concrete semantics and overlooks the underlying reasons driving a user to click on a target item. In this paper, we propose a new framework named Multiplex Target-Behavior Relation enhanced Network (MTBRN) to leverage multiplex relations between user behaviors and target item to enhance CTR prediction. Multiplex relations consist of meaningful semantics, which can bring a better understanding on users' interests from different perspectives. To explore and model multiplex relations, we propose to incorporate various graphs (e.g., knowledge graph and item-item similarity graph) to construct multiple relational paths between user behaviors and target item. Then Bi-LSTM is applied to encode each path in the path extractor layer. A path fusion network and a path activation network are devised to adaptively aggregate and finally learn the representation of all paths for CTR prediction. Extensive offline and online experiments clearly verify the effectiveness of our framework.Comment: Accepted by CIKM202
    • …
    corecore