53,372 research outputs found
Event patterns extracted from anisotropic spectra of charged particles produced in Pb-Pb collisions at 2.76 TeV
Event patterns extracted from anisotropic spectra of charged particles
produced in lead-lead collisions at 2.76 TeV are investigated. We use an
inverse power-law resulted from the QCD calculus to describe the transverse
momentum spectrum in the hard scattering process, and a revised Erlang
distribution resulted from a multisource thermal model to describe the
transverse momentum spectrum and anisotropic flow in the soft excitation
process. The pseudorapidity distribution is described by a three-Gaussian
function which is a revision of the Landau hydrodynamic model. Thus, the event
patterns at the kinetic freeze-out are displayed by the scatter plots of the
considered particles in the three-dimensional velocity, momentum, and rapidity
spaces.Comment: 19 pages, 8 figures, The European Physical Journal A, accepte
Topological semimetals with Riemann surface states
Riemann surfaces are geometric constructions in complex analysis that may
represent multi-valued holomorphic functions using multiple sheets of the
complex plane. We show that the energy dispersion of surface states in
topological semimetals can be represented by Riemann surfaces generated by
holomorphic functions in the two-dimensional momentum space, whose constant
height contours correspond to Fermi arcs. This correspondence is demonstrated
in the recently discovered Weyl semimetals and leads us to predict new types of
topological semimetals, whose surface states are represented by double- and
quad-helicoid Riemann surfaces. The intersection of multiple helicoids, or the
branch cut of the generating function, appears on high-symmetry lines in the
surface Brillouin zone, where surface states are guaranteed to be doubly
degenerate by a glide reflection symmetry. We predict the heterostructure
superlattice [(SrIrO)(CaIrO)] to be a topological semimetal
with double-helicoid Riemann surface states.Comment: Four pages, four figures and two pages of appendice
Engaging Undergraduate Students in Transportation Studies through Simulating Transportation for Realistic Engineering Education and Training (STREET)
The practice of transportation engineering and planning has evolved substantially over the past several decades. A new paradigm for transportation engineering education is required to better engage students and deliver knowledge. Simulation tools have been used by transportation professionals to evaluate and analyze the potential impact of design or control strategy changes. Conveying complex transportation concepts can be effectively achieved by exploring them through simulation. Simulation is particularly valuable in transportation education because most transportation policies and strategies in the real world take years to implement with a prohibitively high cost. Transportation simulation allows learners to apply different control strategies in a risk-free environment and to expose themselves to transportation engineering methodologies that are currently in practice. Despite the advantages, simulation, however, has not been widely adopted in the education of transportation engineering. Using simulation in undergraduate transportation courses is sporadic and reported efforts have been focused on the upper-level technical elective courses. A suite of web-based simulation modules was developed and incorporated in the undergraduate transportation courses at University of Minnesota. The STREET (Simulating Transportation for Realistic Engineering Education and Training) research project was recently awarded by NSF (National Science Foundation) to develop web-based simulation modules to improve instruction in transportation engineering courses and evaluate their effectiveness. Our ultimate goal is to become the epicenter for developing simulation-based teaching materials, an active textbook, which offers an interactive learning environment to undergraduate students. With the hand-on nature of simulation, we hope to improve student understanding of critical concepts in transportation engineering and student motivation toward transportation engineering, and improve student retention in the field. We also would like to disseminate the results and teaching materials to other colleges to integrate the simulation modules in their curricula.Transportation Education and Training, Transportation Simulation, Roadway Geometry Design
- …