32 research outputs found

    Internet of things platform for energy management in multi-microgrid system to improve neutral current compensation

    Full text link
    © 2018 by the authors. In this paper, an Internet of Things (IoT) platform is proposed for Multi-Microgrid (MMG) system to improve unbalance compensation functionality employing three-phase four-leg (3P-4L) voltage source inverters (VSIs). The two level communication system connects the MMG system, implemented in Power System Computer Aided Design (PSCAD), to the cloud server. The local communication level utilizes Modbus Transmission Control Protocol/Internet Protocol (TCP/IP) and Message Queuing Telemetry Transport (MQTT) is used as the protocol for global communication level. A communication operation algorithm is developed to manage the communication operation under various communication failure scenarios. To test the communication system, it is implemented on an experimental testbed to investigate its functionality for MMG neutral current compensation (NCC). To compensate the neutral current in MMG, a dynamic NCC algorithm is proposed, which enables the MGs to further improve the NCC by sharing their data using the IoT platform. The performance of the control and communication system using dynamic NCC is compared with the fixed capacity NCC for unbalance compensation under different communication failure conditions. The impact of the communication system performance on the NCC sharing is the focus of this research. The results show that the proposed system provides better neutral current compensation and phase balancing in case of MMG operation by sharing the data effectively even if the communication system is failing partially

    A hybrid AC/DC microgrid control system based on a virtual synchronous generator for smooth transient performances

    Full text link
    This paper presents a high-performance control strategy to support an optimised transient performance for a hybrid AC/DC microgrid system based on an improved virtual synchronous generator (VSG). The standard VSG is modified and an improved control strategy is developed. A pre-synchronization controller is embedded within the improved VSG controller for grid-connection use. In addition, this paper builds the small-signal model for the improved VSG controller in order to analyse the system's stability. A controller for the battery energy storage system is developed in order to assist the power output of the hybrid microgrid. The microgrid system is designed in a MATLAB/SIMULINK simulation environment based on the under-construction hybrid AC/DC microgrid system at Griffith University, Australia. A comparative study of droop control, conventional VSG control, and the improved VSG control is carried out under different possible transient cases. The pre-synchronization method is also tested. The simulation results show that the improved VSG control strategy is evidently able to ensure smooth variations in frequency, voltage and active power during transient cases
    corecore