844 research outputs found
Anterior Hippocampus and Goal-Directed Spatial Decision Making
Contains fulltext :
115487.pdf (publisher's version ) (Open Access
Deterministically Driven Avalanche Models of Solar Flares
We develop and discuss the properties of a new class of lattice-based
avalanche models of solar flares. These models are readily amenable to a
relatively unambiguous physical interpretation in terms of slow twisting of a
coronal loop. They share similarities with other avalanche models, such as the
classical stick--slip self-organized critical model of earthquakes, in that
they are driven globally by a fully deterministic energy loading process. The
model design leads to a systematic deficit of small scale avalanches. In some
portions of model space, mid-size and large avalanching behavior is scale-free,
being characterized by event size distributions that have the form of
power-laws with index values, which, in some parameter regimes, compare
favorably to those inferred from solar EUV and X-ray flare data. For models
using conservative or near-conservative redistribution rules, a population of
large, quasiperiodic avalanches can also appear. Although without direct
counterparts in the observational global statistics of flare energy release,
this latter behavior may be relevant to recurrent flaring in individual coronal
loops. This class of models could provide a basis for the prediction of large
solar flares.Comment: 24 pages, 11 figures, 2 tables, accepted for publication in Solar
Physic
Functional chromatin features are associated with structural mutations in cancer.
BACKGROUND: Structural mutations (SMs) play a major role in cancer development. In some cancers, such as breast and ovarian, DNA double-strand breaks (DSBs) occur more frequently in transcribed regions, while in other cancer types such as prostate, there is a consistent depletion of breakpoints in transcribed regions. Despite such regularity, little is understood about the mechanisms driving these effects. A few works have suggested that protein binding may be relevant, e.g. in studies of androgen receptor binding and active chromatin in specific cell types. We hypothesized that this behavior might be general, i.e. that correlation between protein-DNA binding (and open chromatin) and breakpoint locations is common across divergent cancers.
RESULTS: We investigated this hypothesis by comprehensively analyzing the relationship among 457 ENCODE protein binding ChIP-seq experiments, 125 DnaseI and 24 FAIRE experiments, and 14,600 SMs from 8 diverse cancer datasets covering 147 samples. In most cancers, including breast and ovarian, we found enrichment of protein binding and open chromatin in the vicinity of SM breakpoints at distances up to 200 kb. Furthermore, for all cancer types we observed an enhanced enrichment in regions distant from genes when compared to regions proximal to genes, suggesting that the SM-induction mechanism is independent from the bias of DSBs to occur near transcribed regions. We also observed a stronger effect for sites with more than one protein bound.
CONCLUSIONS: Protein binding and open chromatin state are associated with nearby SM breakpoints in many cancer datasets. These observations suggest a consistent mechanism underlying SM locations across different cancers
Minimizing interfacial losses in inverted organic solar cells comprising Al-doped ZnO
We demonstrated a 35% enhancement in the efficiency of inverted solar cells as a result of increased open-circuit voltage and fill factor by adsorbing an ultrathin layer of a ruthenium dye N719 on an aluminum-doped zinc oxide (ZnO-Al) electron collecting interfacial layer. The interface modification with N719 changes the charge injection levels as indicated by ultraviolet photoemission spectroscopy. The efficiency of inverted solar cells comprising a bulk heterojunction photo-active film of poly(3-hexylthiophene) and phenyl-C 61-butyric acid methyl ester has increased from ∼2.80% to 3.80% upon employing the dye modification of the electrode interface
Local disorder and optical properties in V-shaped quantum wires : towards one-dimensional exciton systems
The exciton localization is studied in GaAs/GaAlAs V-shaped quantum wires
(QWRs) by high spatial resolution spectroscopy. Scanning optical imaging of
different generations of samples shows that the localization length has been
enhanced as the growth techniques were improved. In the best samples, excitons
are delocalized in islands of length of the order of 1 micron, and form a
continuum of 1D states in each of them, as evidenced by the sqrt(T) dependence
of the radiative lifetime. On the opposite, in the previous generation of QWRs,
the localization length is typically 50 nm and the QWR behaves as a collection
of quantum boxes. These localization properties are compared to structural
properties and related to the progresses of the growth techniques. The presence
of residual disorder is evidenced in the best samples and explained by the
separation of electrons and holes due to the large in-built piezo-electric
field present in the structure.Comment: 8 figure
Minority carrier transport length of electrodeposited Cu2O in ZnO/Cu2O heterojunction solar cells
The minority carrier transport length is a critical parameter limiting the performance of inexpensive Cu2 O-ZnO photovoltaic devices. In this letter, this length is estimated to be ∼430 nm for electrochemically deposited Cu2 O by linking the cell's carrier generation profile with back and front incident photon-to-electron conversion efficiency measurements to a one-dimensional transport model. This critical length explains the losses typically presented by these devices and appears to correlate well with the microcrystalline film structure. The consequences of the magnitude of the length on device design with the aim of improving solar cell performance are described
Molecular conservation of estrogen-response associated with cell cycle regulation, hormonal carcinogenesis and cancer in zebrafish and human cancer cell lines
BMC Medical Genomics4
Anomaly analysis of Hawking radiation from Kaluza-Klein black hole with squashed horizon
Considering gravitational and gauge anomalies at the horizon, a new method
that to derive Hawking radiations from black holes has been developed by
Wilczek et al. In this paper, we apply this method to non-rotating and rotating
Kaluza-Klein black holes with squashed horizon, respectively. For the rotating
case, we found that, after the dimensional reduction, an effective U(1) gauge
field is generated by an angular isometry. The results show that the gauge
current and energy-momentum tensor fluxes are exactly equivalent to Hawking
radiation from the event horizon.Comment: 15 pages, no figures, the improved version, accepted by Eur. Phys. J.
A Field-theoretical Interpretation of the Holographic Renormalization Group
A quantum-field theoretical interpretation is given to the holographic RG
equation by relating it to a field-theoretical local RG equation which
determines how Weyl invariance is broken in a quantized field theory. Using
this approach we determine the relation between the holographic C theorem and
the C theorem in two-dimensional quantum field theory which relies on the
Zamolodchikov metric. Similarly we discuss how in four dimensions the
holographic C function is related to a conjectured field-theoretical C
function. The scheme dependence of the holographic RG due to the possible
presence of finite local counterterms is discussed in detail, as well as its
implications for the holographic C function. We also discuss issues special to
the situation when mass deformations are present. Furthermore we suggest that
the holographic RG equation may also be obtained from a bulk diffeomorphism
which reduces to a Weyl transformation on the boundary.Comment: 24 pages, LaTeX, no figures; references added, typos corrected,
paragraph added to section
Four Dimensional Conformal Supergravity From AdS Space
Exploring the role of conformal theories of gravity in string theory, we show
that the minimal (N=2) gauged supergravities in five dimensions induce the
multiplets and transformations of N=1 four dimensional conformal supergravity
on the spacetime boundary. N=1 Poincare supergravity can be induced by
explicitly breaking the conformal invariance via a radial cutoff in the 5d
space. The AdS/CFT correspondence relates the maximal gauged supergravity in
five dimensions to N=4 super Yang-Mills on the 4d spacetime boundary. In this
context we show that the conformal anomaly of the gauge theory induces
conformal gravity on the boundary of the space and that this theory, via the
renormalization group, encapsulates the gravitational dynamics of the skin of
asymptotically AdS spacetimes. Our results have several applications to the
AdS/CFT correspondence and the Randall-Sundrum scenario.Comment: 20 pages, LaTeX. v3. references and minor comments adde
- …