3 research outputs found

    Programmed death-ligand 1 (PD-L1) expression in primary gastric adenocarcinoma and matched metastases.

    Get PDF
    BACKGROUND Combination of immunotherapy and chemotherapy is recommended for first line treatment of gastric adenocarcinoma (GC) patients with locally advanced unresectable disease or metastatic disease. However, data regarding the concordance rate between PD-L1 combined positive score (CPS) in primary GC and matched regional lymph node metastasis (LNmet) or matched distant metastasis (Dmet) is limited. METHODS Tissue microarray sections from primary resected GC, LNmet and Dmet were immunohistochemically stained with anti-PD-L1 (clone SP263). PD-L1 expression was scored separately in tumour cells and immune cells and compared between matched primary GC, LNmet and/or Dmet. CPS was calculated and results for CPS cut-offs 1 and 5 were compared between matched samples. RESULTS 275 PD-L1 stained GC were analysed. 189 primary GC had matched LNmet. CPS cut-off 1 concordance rate between primary GC and LNmet was 77%. 23 primary GC had matched Dmet but no matched LNmet, CPS cut-off 1 concordance rate was 70%. 63 primary GC had both matched LNmet and matched Dmet, CPS cut-off 1 concordance rate of 67%. CPS cut-off 5 results were similar. The proportion of PD-L1 positive tumour cells increased from primary GC (26%) to LNmet (42%) and was highest in Dmet (75%). CONCLUSION Our study showed up to 33% discordance of PD-L1 CPS between primary GC and LNmet and/or Dmet suggesting that multiple biopsies of primary GC and metastatic sites might need to be tested before considering treatment options. Moreover, this is the first study that seems to suggest that tumour cells acquire PD-L1 expression during disease progression

    Nerve Fibers in the Tumor Microenvironment Are Co-Localized with Lymphoid Aggregates in Pancreatic Cancer

    No full text
    B cells and tertiary lymphoid structures (TLS) are reported to be important in survival in cancer. Pancreatic Cancer (PDAC) is one of the most lethal cancer types, and currently, it is the seventh leading cause of cancer-related death worldwide. A better understanding of tumor biology is pivotal to improve clinical outcome. The desmoplastic stroma is a complex system in which crosstalk takes place between cancer-associated fibroblasts, immune cells and cancer cells. Indirect and direct cellular interactions within the tumor microenvironment (TME) drive key processes such as tumor progression, metastasis formation and treatment resistance. In order to understand the aggressiveness of PDAC and its resistance to therapeutics, the TME needs to be further unraveled. There are some limited data about the influence of nerve fibers on cancer progression. Here we show that small nerve fibers are located at lymphoid aggregates in PDAC. This unravels future pathways and has potential to improve clinical outcome by a rational development of new therapeutic strategies

    Nerve Fibers in the Tumor Microenvironment Are Co-Localized with Lymphoid Aggregates in Pancreatic Cancer

    No full text
    B cells and tertiary lymphoid structures (TLS) are reported to be important in survival in cancer. Pancreatic Cancer (PDAC) is one of the most lethal cancer types, and currently, it is the seventh leading cause of cancer-related death worldwide. A better understanding of tumor biology is pivotal to improve clinical outcome. The desmoplastic stroma is a complex system in which crosstalk takes place between cancer-associated fibroblasts, immune cells and cancer cells. Indirect and direct cellular interactions within the tumor microenvironment (TME) drive key processes such as tumor progression, metastasis formation and treatment resistance. In order to understand the aggressiveness of PDAC and its resistance to therapeutics, the TME needs to be further unraveled. There are some limited data about the influence of nerve fibers on cancer progression. Here we show that small nerve fibers are located at lymphoid aggregates in PDAC. This unravels future pathways and has potential to improve clinical outcome by a rational development of new therapeutic strategies
    corecore