3,395 research outputs found
Joint Cache Partition and Job Assignment on Multi-Core Processors
Multicore shared cache processors pose a challenge for designers of embedded
systems who try to achieve minimal and predictable execution time of workloads
consisting of several jobs. To address this challenge the cache is statically
partitioned among the cores and the jobs are assigned to the cores so as to
minimize the makespan. Several heuristic algorithms have been proposed that
jointly decide how to partition the cache among the cores and assign the jobs.
We initiate a theoretical study of this problem which we call the joint cache
partition and job assignment problem.
By a careful analysis of the possible cache partitions we obtain a constant
approximation algorithm for this problem. For some practical special cases we
obtain a 2-approximation algorithm, and show how to improve the approximation
factor even further by allowing the algorithm to use additional cache. We also
study possible improvements that can be obtained by allowing dynamic cache
partitions and dynamic job assignments.
We define a natural special case of the well known scheduling problem on
unrelated machines in which machines are ordered by "strength". Our joint cache
partition and job assignment problem generalizes this scheduling problem which
we think is of independent interest. We give a polynomial time algorithm for
this scheduling problem for instances obtained by fixing the cache partition in
a practical case of the joint cache partition and job assignment problem where
job loads are step functions
Effect of Nyquist Noise on the Nyquist Dephasing Rate in 2d Electron Systems
We measure the effect of externally applied broadband Nyquist noise on the
intrinsic Nyquist dephasing rate of electrons in a two-dimensional electron gas
at low temperatures. Within the measurement error, the phase coherence time is
unaffected by the externally applied Nyquist noise, including applied noise
temperatures of up to 300 K. The amplitude of the applied Nyquist noise from
100 MHz to 10 GHz is quantitatively determined in the same experiment using a
microwave network analyzer.Comment: 5 pages, 4 figures. Author affiliation clarified; acknowledgements
modified. Replacement reason clarifie
Electron transport through interacting quantum dots
We present a detailed theoretical investigation of the effect of Coulomb
interactions on electron transport through quantum dots and double barrier
structures connected to a voltage source via an arbitrary linear impedance.
Combining real time path integral techniques with the scattering matrix
approach we derive the effective action and evaluate the current-voltage
characteristics of quantum dots at sufficiently large conductances. Our
analysis reveals a reach variety of different regimes which we specify in
details for the case of chaotic quantum dots. At sufficiently low energies the
interaction correction to the current depends logarithmically on temperature
and voltage. We identify two different logarithmic regimes with the crossover
between them occurring at energies of order of the inverse dwell time of
electrons in the dot. We also analyze the frequency-dependent shot noise in
chaotic quantum dots and elucidate its direct relation to interaction effects
in mesoscopic electron transport.Comment: 21 pages, 4 figures. References added, discussion slightly extende
Dynamic Analysis of a Rotating Shaft Subject to the Double Cutting Force and Time-varying Mass Effects of the Rod
AbstractThis paper investigates the dynamic behaviors of a rotating shaft subjected to the double cutting force and time-varying mass effects. The Timoshenko beam theory is used to model the rotating shaft, and the general boundary condition is assumed as the clamped-hinged supports. This system is used to simulate the manufacture process of the double turret CNC lathes, and the mass of the rod which is reduced gradually in cutting process. The system equations of motion are derived based on the global assumed mode method, and the dynamic responses of the system are obtained by Runge-Kutta numerical method. The transformation matrix is derived to make the equation of motion completing the boundary geometric constraints. The numerical results compare the dynamic response in different moving speeds and skew angles of the cutting forces with/without the time-varying mass effects. Additionally, this paper compares the response with single cutting force and double force. The results show that the double moving force system can reduce not only the machining time but also the amplitude of shaft vibration
A general T-matrix approach applied to two-body and three-body problems in cold atomic gases
We propose a systematic T-matrix approach to solve few-body problems with
s-wave contact interactions in ultracold atomic gases. The problem is generally
reduced to a matrix equation expanded by a set of orthogonal molecular states,
describing external center-of-mass motions of pairs of interacting particles;
while each matrix element is guaranteed to be finite by a proper
renormalization for internal relative motions. This approach is able to
incorporate various scattering problems and the calculations of related
physical quantities in a single framework, and also provides a physically
transparent way to understand the mechanism of resonance scattering. For
applications, we study two-body effective scattering in 2D-3D mixed dimensions,
where the resonance position and width are determined with high precision from
only a few number of matrix elements. We also study three fermions in a
(rotating) harmonic trap, where exotic scattering properties in terms of mass
ratios and angular momenta are uniquely identified in the framework of
T-matrix.Comment: 14 pages, 4 figure
Simplified amino acid alphabets based on deviation of conditional probability from random background
The primitive data for deducing the Miyazawa-Jernigan contact energy or
BLOSUM score matrix consists of pair frequency counts. Each amino acid
corresponds to a conditional probability distribution. Based on the deviation
of such conditional probability from random background, a scheme for reduction
of amino acid alphabet is proposed. It is observed that evident discrepancy
exists between reduced alphabets obtained from raw data of the
Miyazawa-Jernigan's and BLOSUM's residue pair counts. Taking homologous
sequence database SCOP40 as a test set, we detect homology with the obtained
coarse-grained substitution matrices. It is verified that the reduced alphabets
obtained well preserve information contained in the original 20-letter
alphabet.Comment: 9 pages,3figure
Superradiant and Aharonov-Bohm effect for the quantum ring exciton
The Aharonov-Bohm and superradiant effect on the redaitive decay rate of an
exciton in a quantum ring is studied. With the increasing of ring radius, the
exciton decay rate is enhanced by superradiance, while the amplitude of AB
oscillation is decreased. The competition between these two effects is shown
explicitly and may be observable in time-resolved exeriments.Comment: 4 pages, 2 figures, to appear in Solid State Communications (2004
- …