123 research outputs found

    Dual Defense: Adversarial, Traceable, and Invisible Robust Watermarking against Face Swapping

    Full text link
    The malicious applications of deep forgery, represented by face swapping, have introduced security threats such as misinformation dissemination and identity fraud. While some research has proposed the use of robust watermarking methods to trace the copyright of facial images for post-event traceability, these methods cannot effectively prevent the generation of forgeries at the source and curb their dissemination. To address this problem, we propose a novel comprehensive active defense mechanism that combines traceability and adversariality, called Dual Defense. Dual Defense invisibly embeds a single robust watermark within the target face to actively respond to sudden cases of malicious face swapping. It disrupts the output of the face swapping model while maintaining the integrity of watermark information throughout the entire dissemination process. This allows for watermark extraction at any stage of image tracking for traceability. Specifically, we introduce a watermark embedding network based on original-domain feature impersonation attack. This network learns robust adversarial features of target facial images and embeds watermarks, seeking a well-balanced trade-off between watermark invisibility, adversariality, and traceability through perceptual adversarial encoding strategies. Extensive experiments demonstrate that Dual Defense achieves optimal overall defense success rates and exhibits promising universality in anti-face swapping tasks and dataset generalization ability. It maintains impressive adversariality and traceability in both original and robust settings, surpassing current forgery defense methods that possess only one of these capabilities, including CMUA-Watermark, Anti-Forgery, FakeTagger, or PGD methods

    Expression of acetylated tubulin in the postnatal developing mouse cochlea

    Get PDF
    Acetylation tubulin is one of the major post-translational modifications of microtubules. Stable microtubules are well known to contain acetylated tubulin. Here, we examined the spatiotemporal expression of acetylated tubulin in the mouse cochlea during postnatal development. At postnatal day 1 (P1), acetylated tubulin was localized primarily to the auditory nerve inside the cochlea and their synaptic contacts with the inner and outer hair cells (IHCs and OHCs). In the organ of Corti, acetylated tubulin occurred first at the apex of pillar cells. At P5, acetylated tubulin first appeared in the phalangeal processes of Deiters’ cells. At P8, staining was maintained in the phalangeal processes of Deiters’ cells. At P10, labeling in Deiters’ cells extended from the apices of OHCs to the basilar membrane. Labeling was expressed throughout the cytoplasm of pillar cells. At P12, acetylated tubulin displayed prominent and homogeneous labeling along the full length of the pillar cells. Linear labeling was present mainly in the Deiters’ cell bodies underlying OHCs. Between P14 and P17, acetylated tubulin was strongly expressed in inner and outer pillar cells and Deiters’ cells in a similar pattern as observed in the adult, and labeling in these cells were arranged in bundles. In addition, acetylated tubulin was intensely expressed in stria vascularis, root cell bodies, and a small number of fibrocytes of the spiral ligament until the adult. In the adult mouse cochlea, immunostaining continued to predominate in Deiters’ cells and pillar cells. Immunolabeling formed cups securing OHCs basal portions, and continued presence of acetylated tubulin-labeled nerve terminals below IHCs was shown. Our results presented here underscored the essential role played by acetylated tubulin in postnatal cochlear development, auditory neurotransmission and cochlear mechanics

    Northern Hemisphere mid-winter vortex-displacement and vortex-split stratospheric sudden warmings: Influence of the Madden-Julian Oscillation and Quasi-Biennial Oscillation

    Get PDF
    We investigate the connection between the equatorial Madden‐Julian Oscillation (MJO) and different types of the Northern Hemisphere mid‐winter major stratospheric sudden warmings (SSWs), i.e., vortex‐displacement and vortex‐split SSWs. The MJO‐SSW relationship for vortex‐split SSWs is stronger than that for vortex‐displacement SSWs, as a result of the stronger and more coherent eastward propagating MJOs before vortex‐split SSWs than those before vortex‐displacement SSWs. Composite analysis indicates that both the intensity and propagation features of MJO may influence the MJO‐related circulation pattern at high latitudes and the type of SSWs. A pronounced Quasi‐Biennial Oscillation (QBO) dependence is found for vortex‐displacement and vortex‐split SSWs, with vortex‐displacement (‐split) SSWs occurring preferentially in easterly (westerly) QBO phases. The lagged composites suggest that the MJO‐related anomalies in the Arctic are very likely initiated when the MJO‐related convection is active over the equatorial Indian Ocean (around the MJO phase 3). Further analysis suggests that the QBO may modulate the MJO‐related wave disturbances via its influence on the upper tropospheric subtropical jet. As a result, the MJO‐related circulation pattern in the Arctic tends to be wave number‐one/wave number‐two ~25–30 days following phase 3 (i.e., approximately phases 7–8, when the MJO‐related convection is active over the western Pacific) during easterly/westerly QBO phases, which resembles the circulation pattern associated with vortex‐displacement/vortex‐split SSWs

    Molecular evolution of Wcor15 gene enhanced our understanding of the origin of A, B and D genomes in Triticum aestivum

    Get PDF
    Publisher's Version/PDFThe allohexaploid bread wheat originally derived from three closely related species with A, B and D genome. Although numerous studies were performed to elucidate its origin and phylogeny, no consensus conclusion has reached. In this study, we cloned and sequenced the genes Wcor15-2A, Wcor15-2B and Wcor15-2D in 23 diploid, 10 tetraploid and 106 hexaploid wheat varieties and analyzed their molecular evolution to reveal the origin of the A, B and D genome in Triticum aestivum. Comparative analyses of sequences in diploid, tetraploid and hexaploid wheats suggest that T. urartu, Ae. speltoides and Ae. tauschii subsp. strangulata are most likely the donors of the Wcor15-2A, Wcor15-2B and Wcor15-2D locus in common wheat, respectively. The Wcor15 genes from subgenomes A and D were very conservative without insertion and deletion of bases during evolution of diploid, tetraploid and hexaploid. Non-coding region of Wcor15-2B gene from B genome might mutate during the first polyploidization from Ae. speltoides to tetraploid wheat, however, no change has occurred for this gene during the second allopolyploidization from tetraploid to hexaploid. Comparison of the Wcor15 gene shed light on understanding of the origin of the A, B and D genome of common wheat
    corecore