53 research outputs found

    Fine-Grained Spatiotemporal Motion Alignment for Contrastive Video Representation Learning

    Full text link
    As the most essential property in a video, motion information is critical to a robust and generalized video representation. To inject motion dynamics, recent works have adopted frame difference as the source of motion information in video contrastive learning, considering the trade-off between quality and cost. However, existing works align motion features at the instance level, which suffers from spatial and temporal weak alignment across modalities. In this paper, we present a \textbf{Fi}ne-grained \textbf{M}otion \textbf{A}lignment (FIMA) framework, capable of introducing well-aligned and significant motion information. Specifically, we first develop a dense contrastive learning framework in the spatiotemporal domain to generate pixel-level motion supervision. Then, we design a motion decoder and a foreground sampling strategy to eliminate the weak alignments in terms of time and space. Moreover, a frame-level motion contrastive loss is presented to improve the temporal diversity of the motion features. Extensive experiments demonstrate that the representations learned by FIMA possess great motion-awareness capabilities and achieve state-of-the-art or competitive results on downstream tasks across UCF101, HMDB51, and Diving48 datasets. Code is available at \url{https://github.com/ZMHH-H/FIMA}.Comment: ACM MM 2023 Camera Read

    TransPose: 6D Object Pose Estimation with Geometry-Aware Transformer

    Full text link
    Estimating the 6D object pose is an essential task in many applications. Due to the lack of depth information, existing RGB-based methods are sensitive to occlusion and illumination changes. How to extract and utilize the geometry features in depth information is crucial to achieve accurate predictions. To this end, we propose TransPose, a novel 6D pose framework that exploits Transformer Encoder with geometry-aware module to develop better learning of point cloud feature representations. Specifically, we first uniformly sample point cloud and extract local geometry features with the designed local feature extractor base on graph convolution network. To improve robustness to occlusion, we adopt Transformer to perform the exchange of global information, making each local feature contains global information. Finally, we introduce geometry-aware module in Transformer Encoder, which to form an effective constrain for point cloud feature learning and makes the global information exchange more tightly coupled with point cloud tasks. Extensive experiments indicate the effectiveness of TransPose, our pose estimation pipeline achieves competitive results on three benchmark datasets.Comment: 10 pages, 5 figures, IEEE Journa

    Ambient-Aware LiDAR Odometry in Variable Terrains

    Full text link
    The flexibility of Simultaneous Localization and Mapping (SLAM) algorithms in various environments has consistently been a significant challenge. To address the issue of LiDAR odometry drift in high-noise settings, integrating clustering methods to filter out unstable features has become an effective module of SLAM frameworks. However, reducing the amount of point cloud data can lead to potential loss of information and possible degeneration. As a result, this research proposes a LiDAR odometry that can dynamically assess the point cloud's reliability. The algorithm aims to improve adaptability in diverse settings by selecting important feature points with sensitivity to the level of environmental degeneration. Firstly, a fast adaptive Euclidean clustering algorithm based on range image is proposed, which, combined with depth clustering, extracts the primary structural points of the environment defined as ambient skeleton points. Then, the environmental degeneration level is computed through the dense normal features of the skeleton points, and the point cloud cleaning is dynamically adjusted accordingly. The algorithm is validated on the KITTI benchmark and real environments, demonstrating higher accuracy and robustness in different environments

    Causality-based Cross-Modal Representation Learning for Vision-and-Language Navigation

    Full text link
    Vision-and-Language Navigation (VLN) has gained significant research interest in recent years due to its potential applications in real-world scenarios. However, existing VLN methods struggle with the issue of spurious associations, resulting in poor generalization with a significant performance gap between seen and unseen environments. In this paper, we tackle this challenge by proposing a unified framework CausalVLN based on the causal learning paradigm to train a robust navigator capable of learning unbiased feature representations. Specifically, we establish reasonable assumptions about confounders for vision and language in VLN using the structured causal model (SCM). Building upon this, we propose an iterative backdoor-based representation learning (IBRL) method that allows for the adaptive and effective intervention on confounders. Furthermore, we introduce the visual and linguistic backdoor causal encoders to enable unbiased feature expression for multi-modalities during training and validation, enhancing the agent's capability to generalize across different environments. Experiments on three VLN datasets (R2R, RxR, and REVERIE) showcase the superiority of our proposed method over previous state-of-the-art approaches. Moreover, detailed visualization analysis demonstrates the effectiveness of CausalVLN in significantly narrowing down the performance gap between seen and unseen environments, underscoring its strong generalization capability.Comment: 16 page

    Unbiased Directed Object Attention Graph for Object Navigation

    Full text link
    Object navigation tasks require agents to locate specific objects in unknown environments based on visual information. Previously, graph convolutions were used to implicitly explore the relationships between objects. However, due to differences in visibility among objects, it is easy to generate biases in object attention. Thus, in this paper, we propose a directed object attention (DOA) graph to guide the agent in explicitly learning the attention relationships between objects, thereby reducing the object attention bias. In particular, we use the DOA graph to perform unbiased adaptive object attention (UAOA) on the object features and unbiased adaptive image attention (UAIA) on the raw images, respectively. To distinguish features in different branches, a concise adaptive branch energy distribution (ABED) method is proposed. We assess our methods on the AI2-Thor dataset. Compared with the state-of-the-art (SOTA) method, our method reports 7.4%, 8.1% and 17.6% increase in success rate (SR), success weighted by path length (SPL) and success weighted by action efficiency (SAE), respectively.Comment: 13 pages, ready to ACM Mutimedia, under revie

    PASTS: Progress-Aware Spatio-Temporal Transformer Speaker For Vision-and-Language Navigation

    Full text link
    Vision-and-language navigation (VLN) is a crucial but challenging cross-modal navigation task. One powerful technique to enhance the generalization performance in VLN is the use of an independent speaker model to provide pseudo instructions for data augmentation. However, current speaker models based on Long-Short Term Memory (LSTM) lack the ability to attend to features relevant at different locations and time steps. To address this, we propose a novel progress-aware spatio-temporal transformer speaker (PASTS) model that uses the transformer as the core of the network. PASTS uses a spatio-temporal encoder to fuse panoramic representations and encode intermediate connections through steps. Besides, to avoid the misalignment problem that could result in incorrect supervision, a speaker progress monitor (SPM) is proposed to enable the model to estimate the progress of instruction generation and facilitate more fine-grained caption results. Additionally, a multifeature dropout (MFD) strategy is introduced to alleviate overfitting. The proposed PASTS is flexible to be combined with existing VLN models. The experimental results demonstrate that PASTS outperforms all existing speaker models and successfully improves the performance of previous VLN models, achieving state-of-the-art performance on the standard Room-to-Room (R2R) dataset.Comment: 15 pages, 11 figure

    InstructDET: Diversifying Referring Object Detection with Generalized Instructions

    Full text link
    We propose InstructDET, a data-centric method for referring object detection (ROD) that localizes target objects based on user instructions. While deriving from referring expressions (REC), the instructions we leverage are greatly diversified to encompass common user intentions related to object detection. For one image, we produce tremendous instructions that refer to every single object and different combinations of multiple objects. Each instruction and its corresponding object bounding boxes (bbxs) constitute one training data pair. In order to encompass common detection expressions, we involve emerging vision-language model (VLM) and large language model (LLM) to generate instructions guided by text prompts and object bbxs, as the generalizations of foundation models are effective to produce human-like expressions (e.g., describing object property, category, and relationship). We name our constructed dataset as InDET. It contains images, bbxs and generalized instructions that are from foundation models. Our InDET is developed from existing REC datasets and object detection datasets, with the expanding potential that any image with object bbxs can be incorporated through using our InstructDET method. By using our InDET dataset, we show that a conventional ROD model surpasses existing methods on standard REC datasets and our InDET test set. Our data-centric method InstructDET, with automatic data expansion by leveraging foundation models, directs a promising field that ROD can be greatly diversified to execute common object detection instructions.Comment: 29 pages (include Appendix) Published in ICL

    On Two Classes of Primitive BCH Codes and Some Related Codes

    No full text
    corecore