131 research outputs found
Synthesis and Luminescence Properties of Core/Shell ZnS:Mn/ZnO Nanoparticles
In this paper the influence of ZnO shell thickness on the luminescence properties of Mn-doped ZnS nanoparticles is studied. Transmission electron microscopy (TEM) images showed that the average diameter of ZnS:Mn nanoparticles is around 14 nm. The formation of ZnO shells on the surface of ZnS:Mn nanoparticles was confirmed by X-ray diffraction (XRD) patterns, high-resolution TEM (HRTEM) images, and X-ray photoelectron spectroscopy (XPS) measurements. A strong increase followed by a gradual decline was observed in the room temperature photoluminescence (PL) spectra with the thickening of the ZnO shell. The photoluminescence excitation (PLE) spectra exhibited a blue shift in ZnO-coated ZnS:Mn nanoparticles compared with the uncoated ones. It is shown that the PL enhancement and the blue shift of optimum excitation wavelength are led by the ZnO-induced surface passivation and compressive stress on the ZnS:Mn cores
Virulence of H5N1 virus in mice attenuates after in vitro serial passages
The virulence of A/Vietnam/1194/2004 (VN1194) in mice attenuated after serial passages in MDCK cells and chicken embryos, because the enriched large-plaque variants of the virus had significantly reduced virulence. In contrast, the small-plaque variants of the virus and the variants isolated from the brain of mice that were infected with the parental virus VN1194 had much higher virulence in mice. The virulence attenuation of serially propagated virus may be caused by the reduced neurotropism in mice. Our whole genome sequence analysis revealed substitutions of a total of two amino acids in PB1, three in PB2, two in PA common for virulence attenuated variants, all or part of which may be correlated with the virulence attenuation and reduced neurotropism of the serially propagated VN1194 in mice. Our study indicates that serial passages of VN1194 in vitro lead to adaptation and selection of variants that have markedly decreased virulence and neurotropism, which emphasizes the importance of direct analysis of original or less propagated virus samples
Binder-Free Nickel Oxide Lamellar Layer Anchored CoO Nanoparticles on Nickel Foam for Supercapacitor Electrodes
To enhance the connection of electroactive materials/current collector and accelerate the transport efficiency of the electrons, a binder-free electrode composed of nickel oxide anchored CoO nanoparticles on modified commercial nickel foam (NF) was developed. The nickel oxide layer with lamellar structure which supplied skeleton to load CoO_{x) electroactive materials directly grew on the NF surface, leading to a tight connection between the current collector and electroactive materials. The fabricated electrode exhibits a specific capacitance of 475 F/g at 1 mA/cm. A high capacitance retention of 96% after 3000 cycles is achieved, attributed to the binding improvement at the current collector/electroactive materials interface. Moreover, an asymmetric supercapacitor with an operating voltage window of 1.4 V was assembled using oxidized NF anchored with cobalt oxide as the cathode and activated stainless steel wire mesh as the anode. The device achieves a maximum energy density of 2.43 Wh/kg and power density of 0.18 kW/kg, respectively. The modified NF substrate conducted by a facile and effective electrolysis process, which also could be applied to deposit other electroactive materials for the energy storage device
Efficient capacity enhancement using OFDM with interleaved subcarrier number modulation in bandlimited UOWC systems
We propose and demonstrate an efficient capacity enhancement scheme for bandlimited underwater optical wireless communication (UOWC) systems by utilizing orthogonal frequency division multiplexing with interleaved subcarrier number modulation (OFDM-ISNM). In the proposed OFDM-ISNM, joint number and constellation mapping/de-mapping is utilized to avoid error propagation and subblock interleaving is further applied to address the low-pass effect of the bandlimited UOWC system. The feasibility and superiority of the proposed OFDM-ISNM scheme for practical bandlimited UOWC systems have been verified through both simulations and experiments. The obtained results demonstrate that the proposed OFDM-ISNM scheme is capable of efficiently improving the achievable data rate of the bandlimited UOWC system. Specifically, the experimental results show a significant 28.6% capacity enhancement by OFDM-ISNM over other benchmark schemes, achieving a data rate of 3.6 Gbps through a 2-m water channel
OmniForce: On Human-Centered, Large Model Empowered and Cloud-Edge Collaborative AutoML System
Automated machine learning (AutoML) seeks to build ML models with minimal
human effort. While considerable research has been conducted in the area of
AutoML in general, aiming to take humans out of the loop when building
artificial intelligence (AI) applications, scant literature has focused on how
AutoML works well in open-environment scenarios such as the process of training
and updating large models, industrial supply chains or the industrial
metaverse, where people often face open-loop problems during the search
process: they must continuously collect data, update data and models, satisfy
the requirements of the development and deployment environment, support massive
devices, modify evaluation metrics, etc. Addressing the open-environment issue
with pure data-driven approaches requires considerable data, computing
resources, and effort from dedicated data engineers, making current AutoML
systems and platforms inefficient and computationally intractable.
Human-computer interaction is a practical and feasible way to tackle the
problem of open-environment AI. In this paper, we introduce OmniForce, a
human-centered AutoML (HAML) system that yields both human-assisted ML and
ML-assisted human techniques, to put an AutoML system into practice and build
adaptive AI in open-environment scenarios. Specifically, we present OmniForce
in terms of ML version management; pipeline-driven development and deployment
collaborations; a flexible search strategy framework; and widely provisioned
and crowdsourced application algorithms, including large models. Furthermore,
the (large) models constructed by OmniForce can be automatically turned into
remote services in a few minutes; this process is dubbed model as a service
(MaaS). Experimental results obtained in multiple search spaces and real-world
use cases demonstrate the efficacy and efficiency of OmniForce
Recommended from our members
Brake wear induced PM10 emissions during the world harmonised light-duty vehicle test procedure-brake cycle
In this work, the particulate matter less than 10 μm (PM10) emissions from a medium-sized passenger vehicle's front brake wear were studied using a finite element analysis (FEA) and experimental approaches. The world harmonised light-duty vehicle test procedure-brake (WLTP-B) cycle was chosen to simulate real-world driving. An electrical low-pressure impactor (ELPI+) was used to count the brake wear particles on a brake dynamometer sealed in a chamber. In addition, a machine learning method, namely, extreme gradient boosting (XGBoost), was employed to capture the feature importance rankings of braking conditions contributing to brake wear PM10 emissions. The simulated PM10 emissions were quite consistent with the measured ones, with an overall relative error of 9%, indicating that the proposed simulation approach is promising to predict brake wear PM10 during the WLTP-B cycle. The simulated and experimental PM10 emission factors during the WLTP-B cycle were 6.4 mg km−1 veh−1 and 7.0 mg km−1 veh−1, respectively. Among the 10 trips of the WLTP-B cycle, the measured PM10 of trip #10 was the largest contributor, accounting for 49% of total PM10 emissions. On the other hand, the XGBoost results revealed that the top five most important factors governing brake wear PM10 emissions were dissipation energy, initial braking speed, final rotor temperature, braking power, and deceleration rate. From the perspective of friendly driving behaviour and regulation, limiting severe braking and high-speed braking has the potential to reduce PM10 emissions from brake wear
H5N1 avian influenza re-emergence of Lake Qinghai: phylogenetic and antigenic analyses of the newly isolated viruses and roles of migratory birds in virus circulation
Highly pathogenic avian influenza H5N1 virus has swept west across the globe and caused serious debates on the roles of migratory birds in virus circulation since the first large-scale outbreak in migratory birds of Lake Qinghai, 2005. In May 2006, another outbreak struck Lake Qinghai and six novel strains were isolated. To elucidate these QH06 viruses, the six isolates were subjected to whole-genome sequencing. Phylogenetic analyses show that QH06 viruses are derived from the lineages of Lake Qinghai, 2005. Five of the six novel isolates are adjacent to the strain A/Cygnus olor/Croatia/1/05, and the last one is related to the strain A/duck/Novosibirsk/02/05, an isolate of the flyway. Antigenic analyses suggest that QH06 and QH05 viruses are similar to each other. These findings implicate that QH06 viruses of Lake Qinghai may travel back via migratory birds, though not ruling out the possibility of local circulation of viruses of Lake Qinghai
Single-particle measurements of electrochemical kinetics in NMC and NCA cathodes for Li-ion batteries
The electrochemical kinetics of battery electrodes at the single-particle scale are measured as a function of state-of-charge, and interpreted with the aid of concurrent transmission X-ray microscopy (TXM) of the evolving particle microstructure. An electrochemical cell operating with near-picoampere current resolution is used to characterize single secondary particles of two widely-used cathode compounds, NMC333 and NCA. Interfacial charge transfer kinetics are found to vary by two orders of magnitude with state-of-charge (SOC) in both materials, but the origin of the SOC dependence differs greatly. NCA behavior is dominated by electrochemically-induced microfracture, although thin binder coatings significantly ameliorate mechanical degradation, while NMC333 demonstrates strongly increasing interfacial reaction rates with SOC for chemical reasons. Micro-PITT is used to separate interfacial and bulk transport rates, and show that for commercially relevant particle sizes, interfacial transport is rate-limiting at low SOC, while mixed-control dominates at higher SOC. These results provide mechanistic insight into the mesoscale kinetics of ion intercalation compounds, which can guide the development of high performance rechargeable batteries
Effects of high-intensity interval training, moderate-intensity continuous training, and guideline-based physical activity on cardiovascular metabolic markers, cognitive and motor function in elderly sedentary patients with type 2 diabetes (HIIT-DM): a protocol for a randomized controlled trial
Background and objectiveSedentary behavior is of increasing concern in older patients with type 2 diabetes mellitus (T2DM) due to its potential adverse effects on cardiovascular health, cognitive function, and motor function. While regular exercise has been shown to improve the health of individuals with T2DM, the most effective exercise program for elderly sedentary patients with T2DM remains unclear. Therefore, the objective of this study was to assess the impact of high-intensity interval training (HIIT), moderate-intensity continuous training (MICT), and guideline-based physical activity programs on the cardiovascular health, cognitive function, and motor function of this specific population.MethodsThis study will be a randomized, assessor-blind, three-arm controlled trial. A total of 330 (1:1:1) elderly sedentary patients diagnosed with T2DM will be randomly assigned the HIIT group (10 × 1-min at 85–95% peak HR, intersperse with 1-min active recovery at 60–70% peak HR), MICT (35 min at 65–75% peak HR), and guideline-based group (guideline group) for 12 weeks training. Participants in the guideline group will receive 1-time advice and weekly remote supervision through smartphones. The primary outcomes will be the change in glycosylated hemoglobin (HbA1c) and brain-derived neurotrophic factor (BDNF) after 12-weeks. Secondary outcomes will includes physical activity levels, anthropometric parameters (weight, waist circumference, hip circumference, and body mass index), physical measurements (fat percentage, muscle percentage, and fitness rate), cardiorespiratory fitness indicators (blood pressure, heart rate, vital capacity, and maximum oxygen), biochemical markers (high-density lipoprotein, low-density lipoprotein, triglycerides, total cholesterol, and HbA1c), inflammation level (C-reactive protein), cognitive function (reaction time and dual-task gait test performance), and motor function (static balance, dynamic balance, single-task gait test performance, and grip strength) after 12 weeks.DiscussionThe objective of this study is to evaluate the effect of 12 weeks of HIIT, MICT, and a guideline-based physical activity program on elderly sedentary patients diagnosed with T2DM. Our hypothesis is that both HIIT and MICT will yield improvements in glucose control, cognitive function, cardiopulmonary function, metabolite levels, motor function, and physical fitness compared to the guideline group. Additionally, we anticipate that HIIT will lead to greater benefits in these areas. The findings from this study will provide valuable insights into the selection of appropriate exercise regimens for elderly sedentary individuals with T2DM.Ethics and disseminationThis study has been approved by the Ethics Review Committee of the Reproductive Hospital Affiliated with China Medical University (approval number: 202203). Informed consent will be obtained from all participants or their guardians. Upon completion, the authors will submit their findings to a peer-reviewed journal or academic conference for publication.Clinical trial registrationChinese Clinical Trial Registry, identifier ChiCTR2200061573
- …