66 research outputs found

    Scaling Up Probabilistic Circuits by Latent Variable Distillation

    Full text link
    Probabilistic Circuits (PCs) are a unified framework for tractable probabilistic models that support efficient computation of various probabilistic queries (e.g., marginal probabilities). One key challenge is to scale PCs to model large and high-dimensional real-world datasets: we observe that as the number of parameters in PCs increases, their performance immediately plateaus. This phenomenon suggests that the existing optimizers fail to exploit the full expressive power of large PCs. We propose to overcome such bottleneck by latent variable distillation: we leverage the less tractable but more expressive deep generative models to provide extra supervision over the latent variables of PCs. Specifically, we extract information from Transformer-based generative models to assign values to latent variables of PCs, providing guidance to PC optimizers. Experiments on both image and language modeling benchmarks (e.g., ImageNet and WikiText-2) show that latent variable distillation substantially boosts the performance of large PCs compared to their counterparts without latent variable distillation. In particular, on the image modeling benchmarks, PCs achieve competitive performance against some of the widely-used deep generative models, including variational autoencoders and flow-based models, opening up new avenues for tractable generative modeling

    Sparse Probabilistic Circuits via Pruning and Growing

    Full text link
    Probabilistic circuits (PCs) are a tractable representation of probability distributions allowing for exact and efficient computation of likelihoods and marginals. There has been significant recent progress on improving the scale and expressiveness of PCs. However, PC training performance plateaus as model size increases. We discover that most capacity in existing large PC structures is wasted: fully-connected parameter layers are only sparsely used. We propose two operations: pruning and growing, that exploit the sparsity of PC structures. Specifically, the pruning operation removes unimportant sub-networks of the PC for model compression and comes with theoretical guarantees. The growing operation increases model capacity by increasing the size of the latent space. By alternatingly applying pruning and growing, we increase the capacity that is meaningfully used, allowing us to significantly scale up PC learning. Empirically, our learner achieves state-of-the-art likelihoods on MNIST-family image datasets and on Penn Tree Bank language data compared to other PC learners and less tractable deep generative models such as flow-based models and variational autoencoders (VAEs).Comment: 36th Conference on Neural Information Processing Systems (NeurIPS 2022

    Understanding the Distillation Process from Deep Generative Models to Tractable Probabilistic Circuits

    Full text link
    Probabilistic Circuits (PCs) are a general and unified computational framework for tractable probabilistic models that support efficient computation of various inference tasks (e.g., computing marginal probabilities). Towards enabling such reasoning capabilities in complex real-world tasks, Liu et al. (2022) propose to distill knowledge (through latent variable assignments) from less tractable but more expressive deep generative models. However, it is still unclear what factors make this distillation work well. In this paper, we theoretically and empirically discover that the performance of a PC can exceed that of its teacher model. Therefore, instead of performing distillation from the most expressive deep generative model, we study what properties the teacher model and the PC should have in order to achieve good distillation performance. This leads to a generic algorithmic improvement as well as other data-type-specific ones over the existing latent variable distillation pipeline. Empirically, we outperform SoTA TPMs by a large margin on challenging image modeling benchmarks. In particular, on ImageNet32, PCs achieve 4.06 bits-per-dimension, which is only 0.34 behind variational diffusion models (Kingma et al., 2021)

    Efficient Meta Reinforcement Learning for Preference-based Fast Adaptation

    Full text link
    Learning new task-specific skills from a few trials is a fundamental challenge for artificial intelligence. Meta reinforcement learning (meta-RL) tackles this problem by learning transferable policies that support few-shot adaptation to unseen tasks. Despite recent advances in meta-RL, most existing methods require the access to the environmental reward function of new tasks to infer the task objective, which is not realistic in many practical applications. To bridge this gap, we study the problem of few-shot adaptation in the context of human-in-the-loop reinforcement learning. We develop a meta-RL algorithm that enables fast policy adaptation with preference-based feedback. The agent can adapt to new tasks by querying human's preference between behavior trajectories instead of using per-step numeric rewards. By extending techniques from information theory, our approach can design query sequences to maximize the information gain from human interactions while tolerating the inherent error of non-expert human oracle. In experiments, we extensively evaluate our method, Adaptation with Noisy OracLE (ANOLE), on a variety of meta-RL benchmark tasks and demonstrate substantial improvement over baseline algorithms in terms of both feedback efficiency and error tolerance.Comment: Thirty-sixth Conference on Neural Information Processing Systems (NeurIPS 2022

    Open-World Multi-Task Control Through Goal-Aware Representation Learning and Adaptive Horizon Prediction

    Full text link
    We study the problem of learning goal-conditioned policies in Minecraft, a popular, widely accessible yet challenging open-ended environment for developing human-level multi-task agents. We first identify two main challenges of learning such policies: 1) the indistinguishability of tasks from the state distribution, due to the vast scene diversity, and 2) the non-stationary nature of environment dynamics caused by partial observability. To tackle the first challenge, we propose Goal-Sensitive Backbone (GSB) for the policy to encourage the emergence of goal-relevant visual state representations. To tackle the second challenge, the policy is further fueled by an adaptive horizon prediction module that helps alleviate the learning uncertainty brought by the non-stationary dynamics. Experiments on 20 Minecraft tasks show that our method significantly outperforms the best baseline so far; in many of them, we double the performance. Our ablation and exploratory studies then explain how our approach beat the counterparts and also unveil the surprising bonus of zero-shot generalization to new scenes (biomes). We hope our agent could help shed some light on learning goal-conditioned, multi-task agents in challenging, open-ended environments like Minecraft.Comment: This paper is accepted by CVPR202

    GROOT: Learning to Follow Instructions by Watching Gameplay Videos

    Full text link
    We study the problem of building a controller that can follow open-ended instructions in open-world environments. We propose to follow reference videos as instructions, which offer expressive goal specifications while eliminating the need for expensive text-gameplay annotations. A new learning framework is derived to allow learning such instruction-following controllers from gameplay videos while producing a video instruction encoder that induces a structured goal space. We implement our agent GROOT in a simple yet effective encoder-decoder architecture based on causal transformers. We evaluate GROOT against open-world counterparts and human players on a proposed Minecraft SkillForge benchmark. The Elo ratings clearly show that GROOT is closing the human-machine gap as well as exhibiting a 70% winning rate over the best generalist agent baseline. Qualitative analysis of the induced goal space further demonstrates some interesting emergent properties, including the goal composition and complex gameplay behavior synthesis. The project page is available at https://craftjarvis-groot.github.io

    Describe, Explain, Plan and Select: Interactive Planning with Large Language Models Enables Open-World Multi-Task Agents

    Full text link
    We investigate the challenge of task planning for multi-task embodied agents in open-world environments. Two main difficulties are identified: 1) executing plans in an open-world environment (e.g., Minecraft) necessitates accurate and multi-step reasoning due to the long-term nature of tasks, and 2) as vanilla planners do not consider how easy the current agent can achieve a given sub-task when ordering parallel sub-goals within a complicated plan, the resulting plan could be inefficient or even infeasible. To this end, we propose "D‾\underline{D}escribe, E‾\underline{E}xplain, P‾\underline{P}lan and S‾\underline{S}elect" (DEPS\textbf{DEPS}), an interactive planning approach based on Large Language Models (LLMs). DEPS facilitates better error correction on initial LLM-generated plan\textit{plan} by integrating description\textit{description} of the plan execution process and providing self-explanation\textit{explanation} of feedback when encountering failures during the extended planning phases. Furthermore, it includes a goal selector\textit{selector}, which is a trainable module that ranks parallel candidate sub-goals based on the estimated steps of completion, consequently refining the initial plan. Our experiments mark the milestone of the first zero-shot multi-task agent that can robustly accomplish 70+ Minecraft tasks and nearly double the overall performances. Further testing reveals our method's general effectiveness in popularly adopted non-open-ended domains as well (i.e., ALFWorld and tabletop manipulation). The ablation and exploratory studies detail how our design beats the counterparts and provide a promising update on the ObtainDiamond\texttt{ObtainDiamond} grand challenge with our approach. The code is released at https://github.com/CraftJarvis/MC-Planner.Comment: NeurIPS 202
    • …
    corecore