945 research outputs found
Five times sit-to-stand test completion times among older women: Influence of seat height and arm position
published_or_final_versio
What is the function of mitochondrial networks? A theoretical assessment of hypotheses and proposal for future research
Mitochondria can change their shape from discrete isolated organelles to a large continuous reticulum. The cellular advantages underlying these fused networks are still incompletely understood. In this paper, we describe and compare hypotheses regarding the function of mitochondrial networks. We use mathematical and physical tools both to investigate existing hypotheses and to generate new ones, and we suggest experimental and modelling strategies. Among the novel insights we underline from this work are the possibilities that (i) selective mitophagy is not required for quality control because selective fusion is sufficient; (ii) increased connectivity may have non-linear effects on the diffusion rate of proteins; and (iii) fused networks can act to dampen biochemical fluctuations. We hope to convey to the reader that quantitative approaches can drive advances in the understanding of the physiological advantage of these morphological changes
Mutation analysis of BRCA1 and BRCA2 genes in Iranian high risk breast cancer families
Background: Telomerase is a ribonucleoprotein enzyme that synthesises telomeres after cell
division and maintains chromosomal stability leading to cellular immortalization. Telomerase has
been associated with negative prognostic indicators in some studies. The present study aims to
detect any association between telomerase sub-units: hTERT and hTR and the prognostic
indicators including tumour's size and grade, nodal status and patient's age.
Methods: Tumour samples from 46 patients with primary invasive breast cancer and 3 patients
with benign tumours were collected. RT-PCR analysis was used for the detection of hTR, hTERT,
and PGM1 (as a housekeeping) genes expression.
Results: The expression of hTR and hTERT was found in 31(67.4%) and 38 (82.6%) samples
respectively. We observed a significant association between hTR gene expression and younger age
at diagnosis (p = 0.019) when comparing patients ≤ 40 years with those who are older than 40
years. None of the benign tumours expressed hTR gene. However, the expression of hTERT gene
was revealed in 2 samples.
No significant association between hTR and hTERT expression and tumour's grade, stage and nodal
status was seen.
Conclusion: The expression of hTR and hTERT seems to be independent of tumour's stage. hTR
expression probably plays a greater role in mammary tumourogenesis in younger women (≤ 40
years) and this may have therapeutic implications in the context of hTR targeting strategies
Recommended from our members
The multichannel discharge plasma synthetic jet actuator
The plasma synthetic jet actuator (PSJA) is a flow control device capable of generating high speed pulsed jet. However, the performance of conventional PSJA is restricted by low discharge efficiency and small control area, because one power supply only drives one electrode couple. The present work is to propose a new concept of multichannel discharge plasma synthetic jet actuator (MD-PSJA), which is driven by single power supply. The new MD-PSJA has two types, namely the multi-electrode PSJA and the multi-PSJA array. These two types of MD-PSJA are examined experimentally. The multi-electrode PSJA containing 11-electrode PSJA is first studied. Comparison with standard 2-electrode PSJA reveals that the discharge efficiency and jet velocity increase 200% and 47% respectively under the same input energy and discharge voltage. The multi-PSJA array is later evaluated. One power supply is found to be able to drive an array of 12 PSJAs, resulting in 6 times affected area and 64% jet velocity of a conventional PSJA. The proposed MD-PSJA is finally concluded an improved active flow control actuator in high speed applications
Quantum Fluctuation Theorems
Recent advances in experimental techniques allow one to measure and control
systems at the level of single molecules and atoms. Here gaining information
about fluctuating thermodynamic quantities is crucial for understanding
nonequilibrium thermodynamic behavior of small systems. To achieve this aim,
stochastic thermodynamics offers a theoretical framework, and nonequilibrium
equalities such as Jarzynski equality and fluctuation theorems provide key
information about the fluctuating thermodynamic quantities. We review the
recent progress in quantum fluctuation theorems, including the studies of
Maxwell's demon which plays a crucial role in connecting thermodynamics with
information.Comment: As a chapter of: F. Binder, L. A. Correa, C. Gogolin, J. Anders, and
G. Adesso (eds.), "Thermodynamics in the quantum regime - Fundamental Aspects
and New Directions", (Springer International Publishing, 2018
Electrochemical determination of microRNAs based on isothermal strand-displacement polymerase reaction coupled with multienzyme functionalized magnetic micro-carriers
This study was supported by the National Natural Science Foundation of China (81371901), Doctoral Scientific Fund Project of the Ministry of Education of People's Republic of China (20134433110010), the Critical Point-of-Care Testing (CPOCT) Research grant of American Association for Clinical Chemistry (AACC) and 2015 Distinguished Academic Fellowships of Royal College of Engineering (DVF1415/2/79)
Detection of regulator genes and eQTLs in gene networks
Genetic differences between individuals associated to quantitative phenotypic
traits, including disease states, are usually found in non-coding genomic
regions. These genetic variants are often also associated to differences in
expression levels of nearby genes (they are "expression quantitative trait
loci" or eQTLs for short) and presumably play a gene regulatory role, affecting
the status of molecular networks of interacting genes, proteins and
metabolites. Computational systems biology approaches to reconstruct causal
gene networks from large-scale omics data have therefore become essential to
understand the structure of networks controlled by eQTLs together with other
regulatory genes, and to generate detailed hypotheses about the molecular
mechanisms that lead from genotype to phenotype. Here we review the main
analytical methods and softwares to identify eQTLs and their associated genes,
to reconstruct co-expression networks and modules, to reconstruct causal
Bayesian gene and module networks, and to validate predicted networks in
silico.Comment: minor revision with typos corrected; review article; 24 pages, 2
figure
Synthesis and Pro-Apoptotic Activity of Novel Glycyrrhetinic Acid Derivatives
Triterpenoids are used for medicinal purposes in many countries. Some, such as oleanolic and glycyrrhetinic acids, are known to be anti-inflammatory and anticarcinogenic. However, the biological activities of these naturally occurring molecules against their particular targets are weak, so the synthesis of new synthetic analogues with enhanced potency is needed. By combining modifications to both the A and C rings of 18βH-glycyrrhetinic acid, the novel synthetic derivative methyl 2-cyano-3,12-dioxo-18βH-olean-9(11),1(2)-dien-30-oate was obtained. This derivative displays high antiproliferative activity in cancer cells, including a cell line with a multidrug-resistance phenotype. It causes cell death by inducing the intrinsic caspase-dependent apoptotic pathway
Glutamate Induces Mitochondrial Dynamic Imbalance and Autophagy Activation: Preventive Effects of Selenium
Glutamate-induced cytotoxicity is partially mediated by enhanced oxidative stress. The objectives of the present study are to determine the effects of glutamate on mitochondrial membrane potential, oxygen consumption, mitochondrial dynamics and autophagy regulating factors and to explore the protective effects of selenium against glutamate cytotoxicity in murine neuronal HT22 cells. Our results demonstrated that glutamate resulted in cell death in a dose-dependent manner and supplementation of 100 nM sodium selenite prevented the detrimental effects of glutamate on cell survival. The glutamate induced cytotoxicity was associated with mitochondrial hyperpolarization, increased ROS production and enhanced oxygen consumption. Selenium reversed these alterations. Furthermore, glutamate increased the levels of mitochondrial fission protein markers pDrp1 and Fis1 and caused increase in mitochondrial fragmentation. Selenium corrected the glutamate-caused mitochondrial dynamic imbalance and reduced the number of cells with fragmented mitochondria. Finally, glutamate activated autophagy markers Beclin 1 and LC3-II, while selenium prevented the activation. These results suggest that glutamate targets the mitochondria and selenium supplementation within physiological concentration is capable of preventing the detrimental effects of glutamate on the mitochondria. Therefore, adequate selenium supplementation may be an efficient strategy to prevent the detrimental glutamate toxicity and further studies are warranted to define the therapeutic potentials of selenium in animal disease models and in human
- …