3,861,679 research outputs found

    Contracting and Erupting Components of Sigmoidal Active Regions

    Full text link
    It is recently noted that solar eruptions can be associated with the contraction of coronal loops that are not involved in magnetic reconnection processes. In this paper, we investigate five coronal eruptions originating from four sigmoidal active regions, using high-cadence, high-resolution narrowband EUV images obtained by the Solar Dynamic Observatory (SDO}). The magnitudes of the flares associated with the eruptions range from the GOES-class B to X. Owing to the high-sensitivity and broad temperature coverage of the Atmospheric Imaging Assembly (AIA) onboard SDO, we are able to identify both the contracting and erupting components of the eruptions: the former is observed in cold AIA channels as the contracting coronal loops overlying the elbows of the sigmoid, and the latter is preferentially observed in warm/hot AIA channels as an expanding bubble originating from the center of the sigmoid. The initiation of eruption always precedes the contraction, and in the energetically mild events (B and C flares), it also precedes the increase in GOES soft X-ray fluxes. In the more energetic events, the eruption is simultaneous with the impulsive phase of the nonthermal hard X-ray emission. These observations confirm the loop contraction as an integrated process in eruptions with partially opened arcades. The consequence of contraction is a new equilibrium with reduced magnetic energy, as the contracting loops never regain their original positions. The contracting process is a direct consequence of flare energy release, as evidenced by the strong correlation of the maximal contracting speed, and strong anti-correlation of the time delay of contraction relative to expansion, with the peak soft X-ray flux. This is also implied by the relationship between contraction and expansion, i.e., their timing and speed.Comment: Accepted for publication in Ap

    Massive Domain Wall Fermions on Four-dimensional Anisotropic Lattices

    Get PDF
    We formulate the massive domain wall fermions on anisotropic lattices. For the massive domain wall fermion, we find that the dispersion relation assumes the usual form in the low momentum region when the bare parameters are properly tuned. The quark self-energy and the quark field renormalization constants are calculated to one-loop in bare lattice perturbation theory. For light domain wall fermions, we verified that the chiral mode is stable against quantum fluctuations on anisotropic lattices. This calculation serves as a guidance for the tuning of the parameters in the quark action in future numerical simulations.Comment: 36 pages, 14 figures, references adde
    corecore