3 research outputs found

    Senolysis-Based Elimination of Chemotherapy-Induced Senescent Breast Cancer Cells by Quercetin Derivative with Blocked Hydroxy Groups

    No full text
    Drug-induced senescence program may be activated both in normal and cancer cells as a consequence of chemotherapeutic treatment, leading to some adverse side effects such as senescence-associated secretory phenotype (SASP), secondary senescence, and cancer promotion. Targeted elimination of senescent cells can be achieved by drugs with senolytic activity (senolytics), for example, the plant-derived natural compound quercetin, especially when co-treated with kinase inhibitor dasatinib. In the present study, three quercetin derivatives were synthesized and tested for improved senolytic action against etoposide-induced senescent human normal mammary epithelial cells and triple-negative breast cancer cells in vitro. Transformation of catechol moiety into diphenylmethylene ketal and addition of three acetyl groups to the quercetin molecule (QD3 derivative) promoted the clearance of senescent cancer cells as judged by increased apoptosis compared to etoposide-treated cells. A QD3-mediated senolytic effect was accompanied by decreased SA-beta galactosidase activity and the levels of p27, IL-1β, IL-8, and HSP70 in cancer cells. Similar effects were not observed in senescent normal cells. In conclusion, a novel senolytic agent QD3 was described as acting against etoposide-induced senescent breast cancer cells in vitro. Thus, a new one-two punch anti-cancer strategy based on combined action of a pro-senescence anti-cancer drug and a senolytic agent is proposed

    Mutation Status and Glucose Availability Affect the Response to Mitochondria-Targeted Quercetin Derivative in Breast Cancer Cells

    No full text
    Mitochondria, the main cellular power stations, are important modulators of redox-sensitive signaling pathways that may determine cell survival and cell death decisions. As mitochondrial function is essential for tumorigenesis and cancer progression, mitochondrial targeting has been proposed as an attractive anticancer strategy. In the present study, three mitochondria-targeted quercetin derivatives (mitQ3, 5, and 7) were synthesized and tested against six breast cancer cell lines with different mutation and receptor status, namely ER-positive MCF-7, HER2-positive SK-BR-3, and four triple-negative (TNBC) cells, i.e., MDA-MB-231, MDA-MB-468, BT-20, and Hs 578T cells. In general, the mito-quercetin response was modulated by the mutation status. In contrast to unmodified quercetin, 1 µM mitQ7 induced apoptosis in breast cancer cells. In MCF-7 cells, mitQ7-mediated apoptosis was potentiated under glucose-depleted conditions and was accompanied by elevated mitochondrial superoxide production, while AMPK activation-based energetic stress was associated with the alkalization of intracellular milieu and increased levels of NSUN4. Mito-quercetin also eliminated doxorubicin-induced senescent breast cancer cells, which was accompanied by the depolarization of mitochondrial transmembrane potential. Limited glucose availability also sensitized doxorubicin-induced senescent breast cancer cells to apoptosis. In conclusion, we show an increased cytotoxicity of mitochondria-targeted quercetin derivatives compared to unmodified quercetin against breast cancer cells with different mutation status that can be potentiated by modulating glucose availability

    Open Sea | Closed Sea. Local and Inter-Regional Traditions in Shipbuilding

    No full text
    corecore