25 research outputs found

    Extremal functions in de Branges and Euclidean spaces

    Full text link
    In this work we obtain optimal majorants and minorants of exponential type for a wide class of radial functions on RN\mathbb{R}^N. These extremal functions minimize the L1(RN,x2ν+2Ndx)L^1(\mathbb{R}^N, |x|^{2\nu + 2 - N}dx)-distance to the original function, where ν>1\nu >-1 is a free parameter. To achieve this result we develop new interpolation tools to solve an associated extremal problem for the exponential function Fλ(x)=eλx\mathcal{F}_{\lambda}(x) = e^{-\lambda|x|}, where λ>0\lambda >0, in the general framework of de Branges spaces of entire functions. We then specialize the construction to a particular family of homogeneous de Branges spaces to approach the multidimensional Euclidean case. Finally, we extend the result from the exponential function to a class of subordinated radial functions via integration on the parameter λ>0\lambda >0 against suitable measures. Applications of the results presented here include multidimensional versions of Hilbert-type inequalities, extremal one-sided approximations by trigonometric polynomials for a class of even periodic functions and extremal one-sided approximations by polynomials for a class of functions on the sphere SN1\mathbb{S}^{N-1} with an axis of symmetry

    Gaussian Subordination for the Beurling-Selberg Extremal Problem

    Full text link
    We determine extremal entire functions for the problem of majorizing, minorizing, and approximating the Gaussian function eπλx2e^{-\pi\lambda x^2} by entire functions of exponential type. This leads to the solution of analogous extremal problems for a wide class of even functions that includes most of the previously known examples (for instance \cite{CV2}, \cite{CV3}, \cite{GV} and \cite{Lit}), plus a variety of new interesting functions such as xα|x|^{\alpha} for 1<α-1 < \alpha; \,log((x2+α2)/(x2+β2))\log \,\bigl((x^2 + \alpha^2)/(x^2 + \beta^2)\bigr), for 0α<β0 \leq \alpha < \beta;\, log(x2+α2)\log\bigl(x^2 + \alpha^2\bigr); and x2nlogx2x^{2n} \log x^2\,, for nNn \in \N. Further applications to number theory include optimal approximations of theta functions by trigonometric polynomials and optimal bounds for certain Hilbert-type inequalities related to the discrete Hardy-Littlewood-Sobolev inequality in dimension one

    Hilbert spaces and the pair correlation of zeros of the Riemann zeta-function

    Full text link
    Montgomery's pair correlation conjecture predicts the asymptotic behavior of the function N(T,β)N(T,\beta) defined to be the number of pairs γ\gamma and γ\gamma' of ordinates of nontrivial zeros of the Riemann zeta-function satisfying 0<γ,γT0<\gamma,\gamma'\leq T and 0<γγ2πβ/logT0 < \gamma'-\gamma \leq 2\pi \beta/\log T as TT\to \infty. In this paper, assuming the Riemann hypothesis, we prove upper and lower bounds for N(T,β)N(T,\beta), for all β>0\beta >0, using Montgomery's formula and some extremal functions of exponential type. These functions are optimal in the sense that they majorize and minorize the characteristic function of the interval [β,β][-\beta, \beta] in a way to minimize the L1(R,{1(sinπxπx)2}dx)L^1\big(\mathbb{R}, \big\{1 - \big(\frac{\sin \pi x}{\pi x}\big)^2 \big\}\,dx\big)-error. We give a complete solution for this extremal problem using the framework of reproducing kernel Hilbert spaces of entire functions. This extends previous work by P. X. Gallagher in 1985, where the case β12N\beta \in \frac12 \mathbb{N} was considered using non-extremal majorants and minorants.Comment: to appear in J. Reine Angew. Mat

    Bandlimited approximations to the truncated Gaussian and applications

    Full text link
    In this paper we extend the theory of optimal approximations of functions f:RRf: \R \to \R in the L1(R)L^1(\R)-metric by entire functions of prescribed exponential type (bandlimited functions). We solve this problem for the truncated and the odd Gaussians using explicit integral representations and fine properties of truncated theta functions obtained via the maximum principle for the heat operator. As applications, we recover most of the previously known examples in the literature and further extend the class of truncated and odd functions for which this extremal problem can be solved, by integration on the free parameter and the use of tempered distribution arguments. This is the counterpart of the work \cite{CLV}, where the case of even functions is treated.Comment: to appear in Const. Appro
    corecore