13,475 research outputs found

    A Test of the Particle Paradigm in N-Body Simulations

    Get PDF
    We present results of tests of the evolution of small ``fluid elements'' in cosmological N--body simulations, to examine the validity of their treatment as particles. We find that even very small elements typically collapse along one axis while expanding along another, often to twice or more their initial comoving diameter. This represents a possible problem for high--resolution uses of such simulations.Comment: Uses aasms4.sty; accepted for publication in ApJ Letters. Files available also at ftp://kusmos.phsx.ukans.edu/preprints/ates

    Hot melt adhesive attachment pad

    Get PDF
    A hot melt adhesive attachment pad for releasably securing distinct elements together is described which is particularly useful in the construction industry or a spatial vacuum environment. The attachment pad consists primarily of a cloth selectively impregnated with a charge of hot melt adhesive, a thermo-foil heater, and a thermo-cooler. These components are securely mounted in a mounting assembly. In operation, the operator activates the heating cycle transforming the hot melt adhesive to a substantially liquid state, positions the pad against the attachment surface, and activates the cooling cycle solidifying the adhesive and forming a strong, releasable bond

    7-Li(p,n) Nuclear Data Library for Incident Proton Energies to 150 MeV

    Get PDF
    We describe evaluation methods that make use of experimental data, and nuclear model calculations, to develop an ENDF-formatted data library for the reaction p + Li7 for incident protons with energies up to 150 MeV. The important 7-Li(p,n_0) and 7-Li(p,n_1) reactions are evaluated from the experimental data, with their angular distributions represented using Lengendre polynomial expansions. The decay of the remaining reaction flux is estimated from GNASH nuclear model calculations. The evaluated ENDF-data are described in detail, and illustrated in numerous figures. We also illustrate the use of these data in a representative application by a radiation transport simulation with the code MCNPX.Comment: 11 pages, 8 figures, LaTeX, submitted to Proc. 2000 ANS/ENS International Meeting, Nuclear Applications of Accelerator Technology (AccApp00), November 12-16, Washington, DC, US

    Bars and Cold Dark Matter Halos

    Full text link
    The central part of a dark matter halo reacts to the presence and evolution of a bar. Not only does the halo absorb angular momentum from the disk, it can also be compressed and have its shape modified. We study these issues in a series of cosmologically motivated, highly resolved N-body simulations of barred galaxies run under different initial conditions. In all models we find that the inner halo's central density increases. We model this density increase using the standard adiabatic approximation and the modified formula by Gnedin et al. and find that halo mass profiles are better reproduced by this latter. In models with a strong bar, the dark matter in the central region forms a bar-like structure (``dark matter bar''), which rotates together with the normal bar formed by the stellar component (``stellar bar''). The minor-to-major axial ratio of a halo bar changes with radius with a typical value 0.7 in the central disk region. DM bar amplitude is mostly a function of the stellar bar strength. Models in which the bar amplitude increases or stays roughly constant with time, initially large (40%-60%) misalignment between the halo and disk bars quickly decreases with time as the bar grows. The halo bar is nearly aligned with the stellar bar (~10 degrees lag for the halo) after ~2 Gyr. The torque, which the halo bar exerts on the stellar bar, can serve as a mechanism to regulate the angular momentum transfer from the disk to the halo.Comment: Modified version after referee's suggestions. 17 pages, 12 figures, accepted by Ap

    Dynamic Singularities in Cooperative Exclusion

    Full text link
    We investigate cooperative exclusion, in which the particle velocity can be an increasing function of the density. Within a hydrodynamic theory, an initial density upsteps and downsteps can evolve into: (a) shock waves, (b) continuous compression or rarefaction waves, or (c) a mixture of shocks and continuous waves. These unusual phenomena arise because of an inflection point in the current versus density relation. This anomaly leads to a group velocity that can either be an increasing or a decreasing function of the density on either side of these wave singularities.Comment: 4 pages, 4 figures, 2 column revtex 4-1 format; version 2: substantially rewritten and put in IOP format, mail results unchanged; version 3: minor changes, final version for publication in JSTA

    Fundamental Discreteness Limitations of Cosmological N-Body Clustering Simulations

    Full text link
    We explore some of the effects that discreteness and two-body scattering may have on N-body simulations with ``realistic'' cosmological initial conditions. We use an identical subset of particles from the initial conditions for a 1283128^3 Particle-Mesh (PM) calculation as the initial conditions for a variety P3^3M and Tree code runs. We investigate the effect of mass resolution (the mean interparticle separation) since most ``high resolution'' codes only have high resolution in gravitational force. The phase-insensitive two--point statistics, such as the power spectrum (autocorrelation) are somewhat affected by these variations, but phase-sensitive statistics show greater differences. Results converge at the mean interparticle separation scale of the lowest mass-resolution code. As more particles are added, but the force resolution is held constant, the P3^3M and the Tree runs agree more and more strongly with each other and with the PM run which had the same initial conditions. This shows high particle density is necessary for correct time evolution, since many different results cannot all be correct. However, they do not so converge to a PM run which continued the fluctuations to small scales. Our results show that ignoring them is a major source of error on comoving scales of the missing wavelengths. This can be resolved by putting in a high particle density. Since the codes never agree well on scales below the mean comoving interparticle separation, we find little justification for quantitative predictions on this scale. Some measures vary by 50%, but others can be off by a factor of three or more. Our results suggest possible problems with the density of galaxy halos, formation of early generation objects such as QSO absorber clouds, etc.Comment: Revised version to be published in Astrophysical Journal. One figure changed; expanded discussion, more information on code parameters. Latex, 44 pages, including 19 figures. Higher resolution versions of Figures 10-15 available at: ftp://kusmos.phsx.ukans.edu/preprints/nbod

    The measurement of low pay in the UK labour force survey

    No full text
    Consideration of the National Minimum Wage requires estimates of the distribution of hourly pay. The UK Labour Force Survey (LFS) is a key source of such estimates. The approach most frequently adopted by researchers has been to measure hourly earnings from several questions on pay and hours. The Office for National Statistics is now applying a new approach, based on an alternative more direct measurement introduced in March 1999. These two measures do not produce identical values and this paper investigates sources of discrepancies and concludes that the new variable is more accurate. The difficulty with using the new variable is that it is only available on a subset of respondents. An approach is developed in which missing values of the new variable are replaced by imputed values. The assumptions underlying this imputation approach and results of applying it to LFS data are presented. The relation to weighting approaches is also discussed
    corecore