13,475 research outputs found
A Test of the Particle Paradigm in N-Body Simulations
We present results of tests of the evolution of small ``fluid elements'' in
cosmological N--body simulations, to examine the validity of their treatment as
particles. We find that even very small elements typically collapse along one
axis while expanding along another, often to twice or more their initial
comoving diameter. This represents a possible problem for high--resolution uses
of such simulations.Comment: Uses aasms4.sty; accepted for publication in ApJ Letters. Files
available also at ftp://kusmos.phsx.ukans.edu/preprints/ates
Environmental support for outdoor activities and older people’s Quality of Life
Information unavailable on Web of Knowledge and PubMed
Hot melt adhesive attachment pad
A hot melt adhesive attachment pad for releasably securing distinct elements together is described which is particularly useful in the construction industry or a spatial vacuum environment. The attachment pad consists primarily of a cloth selectively impregnated with a charge of hot melt adhesive, a thermo-foil heater, and a thermo-cooler. These components are securely mounted in a mounting assembly. In operation, the operator activates the heating cycle transforming the hot melt adhesive to a substantially liquid state, positions the pad against the attachment surface, and activates the cooling cycle solidifying the adhesive and forming a strong, releasable bond
7-Li(p,n) Nuclear Data Library for Incident Proton Energies to 150 MeV
We describe evaluation methods that make use of experimental data, and
nuclear model calculations, to develop an ENDF-formatted data library for the
reaction p + Li7 for incident protons with energies up to 150 MeV. The
important 7-Li(p,n_0) and 7-Li(p,n_1) reactions are evaluated from the
experimental data, with their angular distributions represented using Lengendre
polynomial expansions. The decay of the remaining reaction flux is estimated
from GNASH nuclear model calculations. The evaluated ENDF-data are described in
detail, and illustrated in numerous figures. We also illustrate the use of
these data in a representative application by a radiation transport simulation
with the code MCNPX.Comment: 11 pages, 8 figures, LaTeX, submitted to Proc. 2000 ANS/ENS
International Meeting, Nuclear Applications of Accelerator Technology
(AccApp00), November 12-16, Washington, DC, US
Bars and Cold Dark Matter Halos
The central part of a dark matter halo reacts to the presence and evolution
of a bar. Not only does the halo absorb angular momentum from the disk, it can
also be compressed and have its shape modified. We study these issues in a
series of cosmologically motivated, highly resolved N-body simulations of
barred galaxies run under different initial conditions. In all models we find
that the inner halo's central density increases. We model this density increase
using the standard adiabatic approximation and the modified formula by Gnedin
et al. and find that halo mass profiles are better reproduced by this latter.
In models with a strong bar, the dark matter in the central region forms a
bar-like structure (``dark matter bar''), which rotates together with the
normal bar formed by the stellar component (``stellar bar''). The
minor-to-major axial ratio of a halo bar changes with radius with a typical
value 0.7 in the central disk region. DM bar amplitude is mostly a function of
the stellar bar strength. Models in which the bar amplitude increases or stays
roughly constant with time, initially large (40%-60%) misalignment between the
halo and disk bars quickly decreases with time as the bar grows. The halo bar
is nearly aligned with the stellar bar (~10 degrees lag for the halo) after ~2
Gyr. The torque, which the halo bar exerts on the stellar bar, can serve as a
mechanism to regulate the angular momentum transfer from the disk to the halo.Comment: Modified version after referee's suggestions. 17 pages, 12 figures,
accepted by Ap
Dynamic Singularities in Cooperative Exclusion
We investigate cooperative exclusion, in which the particle velocity can be
an increasing function of the density. Within a hydrodynamic theory, an initial
density upsteps and downsteps can evolve into: (a) shock waves, (b) continuous
compression or rarefaction waves, or (c) a mixture of shocks and continuous
waves. These unusual phenomena arise because of an inflection point in the
current versus density relation. This anomaly leads to a group velocity that
can either be an increasing or a decreasing function of the density on either
side of these wave singularities.Comment: 4 pages, 4 figures, 2 column revtex 4-1 format; version 2:
substantially rewritten and put in IOP format, mail results unchanged;
version 3: minor changes, final version for publication in JSTA
Fundamental Discreteness Limitations of Cosmological N-Body Clustering Simulations
We explore some of the effects that discreteness and two-body scattering may
have on N-body simulations with ``realistic'' cosmological initial conditions.
We use an identical subset of particles from the initial conditions for a
Particle-Mesh (PM) calculation as the initial conditions for a variety
PM and Tree code runs. We investigate the effect of mass resolution (the
mean interparticle separation) since most ``high resolution'' codes only have
high resolution in gravitational force. The phase-insensitive two--point
statistics, such as the power spectrum (autocorrelation) are somewhat affected
by these variations, but phase-sensitive statistics show greater differences.
Results converge at the mean interparticle separation scale of the lowest
mass-resolution code. As more particles are added, but the force resolution is
held constant, the PM and the Tree runs agree more and more strongly with
each other and with the PM run which had the same initial conditions. This
shows high particle density is necessary for correct time evolution, since many
different results cannot all be correct. However, they do not so converge to a
PM run which continued the fluctuations to small scales. Our results show that
ignoring them is a major source of error on comoving scales of the missing
wavelengths. This can be resolved by putting in a high particle density. Since
the codes never agree well on scales below the mean comoving interparticle
separation, we find little justification for quantitative predictions on this
scale. Some measures vary by 50%, but others can be off by a factor of three or
more. Our results suggest possible problems with the density of galaxy halos,
formation of early generation objects such as QSO absorber clouds, etc.Comment: Revised version to be published in Astrophysical Journal. One figure
changed; expanded discussion, more information on code parameters. Latex, 44
pages, including 19 figures. Higher resolution versions of Figures 10-15
available at: ftp://kusmos.phsx.ukans.edu/preprints/nbod
The measurement of low pay in the UK labour force survey
Consideration of the National Minimum Wage requires estimates of the distribution of hourly pay. The UK Labour Force Survey (LFS) is a key source of such estimates. The approach most frequently adopted by researchers has been to measure hourly earnings from several questions on pay and hours. The Office for National Statistics is now applying a new approach, based on an alternative more direct measurement introduced in March 1999. These two measures do not produce identical values and this paper investigates sources of discrepancies and concludes that the new variable is more accurate. The difficulty with using the new variable is that it is only available on a subset of respondents. An approach is developed in which missing values of the new variable are replaced by imputed values. The assumptions underlying this imputation approach and results of applying it to LFS data are presented. The relation to weighting approaches is also discussed
- …