18 research outputs found

    Anisotropic Inflation from Extra Dimensions

    Full text link
    Vacuum multidimensional cosmological models with internal spaces being compact nn-dimensional Lie group manifolds are considered. Products of 3-spheres and SU(3)SU(3) manifold (a novelty in cosmology) are studied. It turns out that the dynamical evolution of the internal space drives an accelerated expansion of the external world (power law inflation). This generic solution (attractor in a phase space) is determined by the Lie group space without any fine tuning or arbitrary inflaton potentials. Matter in the four dimensions appears in the form of a number of scalar fields representing anisotropic scale factors for the internal space. Along the attractor solution the volume of the internal space grows logarithmically in time. This simple and natural model should be completed by mechanisms terminating the inflationary evolution and transforming the geometric scalar fields into ordinary particles.Comment: LaTeX, 11 pages, 5 figures available via fax on request to [email protected], submitted to Phys. Lett.

    Graviton Spectra in String Cosmology

    Get PDF
    We propose to uncover the signature of a stringy era in the primordial Universe by searching for a prominent peak in the relic graviton spectrum. This feature, which in our specific model terminates an ω3\omega^3 increase and initiates an ω−7\omega^{-7} decrease, is induced during the so far overlooked bounce of the scale factor between the collapsing deflationary era (or pre-Big Bang) and the expanding inflationary era (or post-Big Bang). We evaluate both analytically and numerically the frequency and the intensity of the peak and we show that they may likely fall in the realm of the new generation of interferometric detectors. The existence of a peak is at variance with ordinarily monotonic (either increasing or decreasing) graviton spectra of canonical cosmologies; its detection would therefore offer strong support to string cosmology.Comment: 14 pages, RevTex source and 6 figures.p

    Inflation in Multidimensional Quantum Cosmology

    Get PDF
    We extend to multidimensional cosmology Vilenkin's prescription of tunnelling from nothing for the quantum origin of the observable Universe. Our model consists of a D+4D+4-dimensional spacetime of topology R×S3×SD{\cal R}\times {\cal S}^3 \times{\cal S}^D, with a scalar field (``chaotic inflaton'') for the matter component. Einstein gravity and Casimir compactification are assumed. The resulting minisuperspace is 3--dimensional. Patchwise we find an approximate analytic solution of the Wheeler--DeWitt equation through which we discuss the tunnelling picture and the probability of nucleation of the classical Universe with compactifying extra dimensions. Our conclusion is that the most likely initial conditions, although they do not lead to the compactification of the internal space, still yield (power-law) inflation for the outer space. The scenario is physically acceptable because the inner space growth is limited to ∌1011\sim 10^{11} in 100 e-foldings of inflation, starting from the Planck scale.Comment: RevTeX, 30 pages, 4 figures available via fax on request to [email protected], submitted to Phys. Rev.

    Pathophysiology and Main Molecular Mechanisms of Urinary Stone Formation and Recurrence

    No full text
    Kidney stone disease (KSD) is one of the most common urological diseases. The incidence of kidney stones has increased dramatically in the last few decades. Kidney stones are mineral deposits in the calyces or the pelvis, free or attached to the renal papillae. They contain crystals and organic components, and they are made when urine is supersaturated with minerals. Calcium-containing stones are the most common, with calcium oxalate as the main component of most stones. However, many of these form on a calcium phosphate matrix called Randall’s plaque, which is found on the surface of the kidney papilla. The etiology is multifactorial, and the recurrence rate is as high as 50% within 5 years after the first stone onset. There is a great need for recurrence prevention that requires a better understanding of the mechanisms involved in stone formation to facilitate the development of more effective drugs. This review aims to understand the pathophysiology and the main molecular mechanisms known to date to prevent recurrences, which requires behavioral and nutritional interventions, as well as pharmacological treatments that are specific to the type of stone
    corecore