9 research outputs found

    On Perfect Weighted Coverings with Small Radius

    Get PDF
    We extend the results of our previous paper [8] to the nonlinear case: The Lloyd polynomial of the covering has at least R distinct roots among 1, ... , n, where R is the covering radius. We investigate PWC with diameter 1, finding a partial characterization. We complete an investigation begun in [8] on linear PMC with distance 1 and diameter 2

    Binary Perfect Weighted Coverings (PWC) I. The Linear Case

    Get PDF
    This paper deals with an extension of perfect codes to fractional (or weighted) coverings. We shall derive a Lloyd theorem --- a strong necessary condition of existence---and start a classification of these perfect coverings according to their diameter. We illustrate by pointing to list decoding

    Weighted Coverings and Packings

    Get PDF
    In this paper we introduce a generalization of the concepts of coverings and packings in Hamming space called weighted coverings and packings. This allows us to formulate a number of well-known coding theoretical problems in a uniform manner. We study the existence of perfect weighted codes, discuss connections between weighted coverings and packings, and present many constructions for them

    Covering Radius 1985-1994

    Get PDF
    We survey important developments in the theory of covering radius during the period 1985-1994. We present lower bounds, constructions and upper bounds, the linear and nonlinear cases, density and asymptotic results, normality, specific classes of codes, covering radius and dual distance, tables, and open problems

    Distance Properties of Short LDPC Codes and their Impact on the BP, ML and Near-ML Decoding Performance

    Full text link
    Parameters of LDPC codes, such as minimum distance, stopping distance, stopping redundancy, girth of the Tanner graph, and their influence on the frame error rate performance of the BP, ML and near-ML decoding over a BEC and an AWGN channel are studied. Both random and structured LDPC codes are considered. In particular, the BP decoding is applied to the code parity-check matrices with an increasing number of redundant rows, and the convergence of the performance to that of the ML decoding is analyzed. A comparison of the simulated BP, ML, and near-ML performance with the improved theoretical bounds on the error probability based on the exact weight spectrum coefficients and the exact stopping size spectrum coefficients is presented. It is observed that decoding performance very close to the ML decoding performance can be achieved with a relatively small number of redundant rows for some codes, for both the BEC and the AWGN channels
    corecore