9 research outputs found
On Perfect Weighted Coverings with Small Radius
We extend the results of our previous paper [8] to the nonlinear case: The Lloyd polynomial of the covering has at least R distinct roots among 1, ... , n, where R is the covering radius. We investigate PWC with diameter 1, finding a partial characterization. We complete an investigation begun in [8] on linear PMC with distance 1 and diameter 2
Binary Perfect Weighted Coverings (PWC) I. The Linear Case
This paper deals with an extension of perfect codes to fractional (or weighted) coverings. We shall derive a Lloyd theorem --- a strong necessary condition of existence---and start a classification of these perfect coverings according to their diameter. We illustrate by pointing to list decoding
Weighted Coverings and Packings
In this paper we introduce a generalization of the concepts of coverings and packings in Hamming space called weighted coverings and packings. This allows us to formulate a number of well-known coding theoretical problems in a uniform manner. We study the existence of perfect weighted codes, discuss connections between weighted coverings and packings, and present many constructions for them
Covering Radius 1985-1994
We survey important developments in the theory of covering radius during the period 1985-1994. We present lower bounds, constructions and upper bounds, the linear and nonlinear cases, density and asymptotic results, normality, specific classes of codes, covering radius and dual distance, tables, and open problems
Distance Properties of Short LDPC Codes and their Impact on the BP, ML and Near-ML Decoding Performance
Parameters of LDPC codes, such as minimum distance, stopping distance,
stopping redundancy, girth of the Tanner graph, and their influence on the
frame error rate performance of the BP, ML and near-ML decoding over a BEC and
an AWGN channel are studied. Both random and structured LDPC codes are
considered. In particular, the BP decoding is applied to the code parity-check
matrices with an increasing number of redundant rows, and the convergence of
the performance to that of the ML decoding is analyzed. A comparison of the
simulated BP, ML, and near-ML performance with the improved theoretical bounds
on the error probability based on the exact weight spectrum coefficients and
the exact stopping size spectrum coefficients is presented. It is observed that
decoding performance very close to the ML decoding performance can be achieved
with a relatively small number of redundant rows for some codes, for both the
BEC and the AWGN channels