10 research outputs found
Studies on the early events of human immunodeficiency virus replication / Litsa Evlambia Karageorgos.
Copy of author's seven page article in pocket inside back cover.Bibliography: leaves 118-143.x, 143, [52] leaves, [23] leaves of plates : ill. ; 30 cm.Thesis (Ph.D.)--University of Adelaide, Dept. of Microbiology and Immunology, 1995
Fluorescence Microscopy—An Outline of Hardware, Biological Handling, and Fluorophore Considerations
Fluorescence microscopy has become a critical tool for researchers to understand biological processes at the cellular level. Micrographs from fixed and live-cell imaging procedures feature in a plethora of scientific articles for the field of cell biology, but the complexities of fluorescence microscopy as an imaging tool can sometimes be overlooked or misunderstood. This review seeks to cover the three fundamental considerations when designing fluorescence microscopy experiments: (1) hardware availability; (2) amenability of biological models to fluorescence microscopy; and (3) suitability of imaging agents for intended applications. This review will help equip the reader to make judicious decisions when designing fluorescence microscopy experiments that deliver high-resolution and informative images for cell biology
Insights into Melanoma Clinical Practice: A Perspective for Future Research
Background: Early diagnosis is the key to improving outcomes for patients with melanoma, and this requires a standardized histological assessment approach. The objective of this survey was to understand the challenges faced by clinicians when assessing melanoma cases, and to provide a perspective for future studies. Methods: Between April 2022 and February 2023, national and international dermatologists, pathologists, general practitioners, and laboratory managers were invited to participate in a six-question online survey. The data from the survey were assessed using descriptive statistics and qualitative responses. Results: A total of 54 responses were received, with a 51.4% (n = 28) full completion rate. Of the respondents, 96.4% reported ambiguity in their monthly melanoma diagnosis, and 82.1% routinely requested immunohistochemistry (IHC) testing to confirm diagnosis. SOX10 was the most frequently requested marker, and most respondents preferred multiple markers over a single marker. Diagnostic and prognostic tests, as well as therapeutic options and patient management, were all identified as important areas for future research. Conclusions: The respondents indicated that the use of multiple IHC markers is essential to facilitate diagnostic accuracy in melanoma assessment. Survey responses indicate there is an urgent need to develop new biomarkers for clinical decision making at multiple critical intervention points
Lysosomal biogenesis in lysosomal storage disorders
Lysosomal biogenesis is an orchestration of the structural and functional elements of the lysosome to form an integrated organelle and involves the synthesis, targeting, functional residence, and turnover of the proteins that comprise the lysosome. We have investigated lysosomal biogenesis during the formation and dissipation of storage vacuoles in two model systems. One involves the formation of sucrosomes in normal skin fibroblasts and the other utilizes storage disorder-affected skin fibroblasts; both of these systems result in an increase in the size and the number of lysosomal vacuoles. Lysosomal proteins, beta-hexosaminidase, alpha-mannosidase, N-acetylgalactosamine-4-sulfatase, acid phosphatase, and the lysosome-associated membrane protein, LAMP-1, were shown to be elevated between 2- and 28-fold above normal during lysosomal storage. Levels of mRNA for the lysosome-associated membrane proteins LAMP-1 and LAMP-2, N-acetylgalactosamine-4-sulfatase, and the 46- and 300-kDa mannose-6-phosphate receptors were also elevated 2- to 8-fold. The up-regulation of protein and mRNA lagged 2-4 days behind the formation of lysosomal storage vacuoles. Correction of storage, in both systems, resulted in the rapid decline of the mRNA to basal levels, with a slower decrease in the levels of lysosomal proteins. Lysosomal biogenesis in storage disorders is shown to be a regulated process which is partially controlled at, or prior to, the level of mRNA. Although lysosomal proteins were differentially regulated, the coordination of these events in lysosomal biogenesis would suggest that a common mechanism(s) may be in operation
Dynamic interplay between sortilin and syndecan-1 contributes to prostate cancer progression
Abstract Prostate cancer (PCa) development and progression relies on the programming of glucose and lipid metabolism, and this involves alterations in androgen receptor expression and signalling. Defining the molecular mechanism that underpins this metabolic programming will have direct significance for patients with PCa who have a poor prognosis. Here we show that there is a dynamic balance between sortilin and syndecan-1, that reports on different metabolic phenotypes. Using tissue microarrays, we demonstrated by immunohistochemistry that sortilin was highly expressed in low-grade cancer, while syndecan-1 was upregulated in high-grade disease. Mechanistic studies in prostate cell lines revealed that in androgen-sensitive LNCaP cells, sortilin enhanced glucose metabolism by regulating GLUT1 and GLUT4, while binding progranulin and lipoprotein lipase (LPL) to limit lipid metabolism. In contrast, in androgen-insensitive PC3 cells, syndecan-1 was upregulated, interacted with LPL and colocalised with β3 integrin to promote lipid metabolism. In addition, androgen-deprived LNCaP cells had decreased expression of sortilin and reduced glucose-metabolism, but increased syndecan-1 expression, facilitating interactions with LPL and possibly β3 integrin. We report a hitherto unappreciated molecular mechanism for PCa, which may have significance for disease progression and how androgen-deprivation therapy might promote castration-resistant PCa
Prediction of Prostate Cancer Biochemical and Clinical Recurrence Is Improved by IHC-Assisted Grading Using Appl1, Sortilin and Syndecan-1
Gleason scoring is used within a five-tier risk stratification system to guide therapeutic decisions for patients with prostate cancer. This study aimed to compare the predictive performance of routine H&E or biomarker-assisted ISUP (International Society of Urological Pathology) grade grouping for assessing the risk of biochemical recurrence (BCR) and clinical recurrence (CR) in patients with prostate cancer. This retrospective study was an assessment of 114 men with prostate cancer who provided radical prostatectomy samples to the Australian Prostate Cancer Bioresource between 2006 and 2014. The prediction of CR was the primary outcome (median time to CR 79.8 months), and BCR was assessed as a secondary outcome (median time to BCR 41.7 months). The associations of (1) H&E ISUP grade groups and (2) modified ISUP grade groups informed by the Appl1, Sortilin and Syndecan-1 immunohistochemistry (IHC) labelling were modelled with BCR and CR using Cox proportional hazard approaches. IHC-assisted grading was more predictive than H&E for BCR (C-statistic 0.63 vs. 0.59) and CR (C-statistic 0.71 vs. 0.66). On adjusted analysis, IHC-assisted ISUP grading was independently associated with both outcome measures. IHC-assisted ISUP grading using the biomarker panel was an independent predictor of individual BCR and CR. Prospective studies are needed to further validate this biomarker technology and to define BCR and CR associations in real-world cohorts