376 research outputs found

    Distributed Ledger for Provenance Tracking of Artificial Intelligence Assets

    Full text link
    High availability of data is responsible for the current trends in Artificial Intelligence (AI) and Machine Learning (ML). However, high-grade datasets are reluctantly shared between actors because of lacking trust and fear of losing control. Provenance tracing systems are a possible measure to build trust by improving transparency. Especially the tracing of AI assets along complete AI value chains bears various challenges such as trust, privacy, confidentiality, traceability, and fair remuneration. In this paper we design a graph-based provenance model for AI assets and their relations within an AI value chain. Moreover, we propose a protocol to exchange AI assets securely to selected parties. The provenance model and exchange protocol are then combined and implemented as a smart contract on a permission-less blockchain. We show how the smart contract enables the tracing of AI assets in an existing industry use case while solving all challenges. Consequently, our smart contract helps to increase traceability and transparency, encourages trust between actors and thus fosters collaboration between them

    End stage renal disease patients have a skewed T cell receptor Vβ repertoire

    Get PDF
    BACKGROUND: End stage renal disease (ESRD) is associated with defective T-cell mediated immunity. A diverse T-cell receptor (TCR) Vβ repertoire is central to effective T-cell mediated immune responses to foreign antigens. In this study, the effect of ESRD on TCR Vβ repertoire was assessed. RESULTS: A higher proportion of ESRD patients (68.9 %) had a skewed TCR Vβ repertoire compared to age and cytomegalovirus (CMV) – IgG serostatus matched healthy individuals (31.4 %, P < 0.001). Age, CMV serostatus and ESRD were independently associated with an increase in shifting of the TCR Vβ repertoire. More differentiated CD8(+) T cells were observed in young ESRD patients with a shifted TCR Vβ repertoire. CD31-expressing naive T cells and relative telomere length of T cells were not significantly related to TCR Vβ skewing. CONCLUSIONS: ESRD significantly skewed the TCR Vβ repertoire particularly in the elderly population, which may contribute to the uremia-associated defect in T-cell mediated immunity. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12979-015-0055-7) contains supplementary material, which is available to authorized users

    Interaction of Polysialic Acid with CCL21 Regulates the Migratory Capacity of Human Dendritic Cells

    Get PDF
    Dendritic cells (DCs) are the most potent antigen-presenting cells (APCs). Immature DCs (iDCs) are situated in the periphery where they capture pathogen. Subsequently, they migrate as mature DCs (mDCs) to draining lymph nodes to activate T cells. CCR7 and CCL21 contribute to the migratory capacity of the DC, but it is not completely understood what molecular requirements are involved. Here we demonstrate that monocyte-derived DCs dramatically change ST8Sia IV expression during maturation, leading to the generation of polysialic acid (polySia). PolySia expression is highly upregulated after 2 days Toll-like receptor-4 (TLR4) triggering. Surprisingly, only immunogenic and not tolerogenic mDCs upregulated polySia expression. Furthermore, we show that polySia expression on DCs is required for CCL21-directed migration, whereby polySia directly captures CCL21. Corresponding to polySia, the expression level of CCR7 is maximal two days after TLR4 triggering. In contrast, although TLR agonists other than LPS induce upregulation of CCR7, they achieve only a moderate polySia expression. In situ we could detect polySia-expressing APCs in the T cell zone of the lymph node and in the deep dermis. Together our results indicate that prolonged TLR4 engagement is required for the generation of polySia-expressing DCs that facilitate CCL21 capture and subsequent CCL21-directed migration

    Deep Placental Vessel Segmentation for Fetoscopic Mosaicking

    Get PDF
    During fetoscopic laser photocoagulation, a treatment for twin-to-twin transfusion syndrome (TTTS), the clinician first identifies abnormal placental vascular connections and laser ablates them to regulate blood flow in both fetuses. The procedure is challenging due to the mobility of the environment, poor visibility in amniotic fluid, occasional bleeding, and limitations in the fetoscopic field-of-view and image quality. Ideally, anastomotic placental vessels would be automatically identified, segmented and registered to create expanded vessel maps to guide laser ablation, however, such methods have yet to be clinically adopted. We propose a solution utilising the U-Net architecture for performing placental vessel segmentation in fetoscopic videos. The obtained vessel probability maps provide sufficient cues for mosaicking alignment by registering consecutive vessel maps using the direct intensity-based technique. Experiments on 6 different in vivo fetoscopic videos demonstrate that the vessel intensity-based registration outperformed image intensity-based registration approaches showing better robustness in qualitative and quantitative comparison. We additionally reduce drift accumulation to negligible even for sequences with up to 400 frames and we incorporate a scheme for quantifying drift error in the absence of the ground-truth. Our paper provides a benchmark for fetoscopy placental vessel segmentation and registration by contributing the first in vivo vessel segmentation and fetoscopic videos dataset.Comment: Accepted at MICCAI 202

    Decreased antigen-specific T-cell proliferation by moDC among hepatitis B vaccine non-responders on haemodialysis

    Get PDF
    Patients with end-stage kidney disease, whether or not on renal replacement therapy, have an impaired immune system. This is clinically manifested by a large percentage of patients unresponsive to the standard vaccination procedure for hepatitis B virus (HBV). In this study, the immune response to HBV vaccination is related to the in vitro function of monocyte-derived dendritic cells (moDC). We demonstrate that mature moDC from nonresponders to HBV vaccination have a less mature phenotype, compared to responders and healthy volunteers, although this did not affect their allostimulatory capacity. However, proliferation of autologous T cells in the presence of tetanus toxoid and candida antigen was decreased in non-responders. Also, HLA-matched CD4+ hsp65-specific human T-cell clones showed markedly decreased proliferation in the group of non-responders. Our results indicate that impairment of moDC to stimulate antigen-specific T cells provides an explanation for the clinical immunodeficiency of patients with end-stage kidney disease

    An Elastic Interaction-Based Loss Function for Medical Image Segmentation

    Full text link
    Deep learning techniques have shown their success in medical image segmentation since they are easy to manipulate and robust to various types of datasets. The commonly used loss functions in the deep segmentation task are pixel-wise loss functions. This results in a bottleneck for these models to achieve high precision for complicated structures in biomedical images. For example, the predicted small blood vessels in retinal images are often disconnected or even missed under the supervision of the pixel-wise losses. This paper addresses this problem by introducing a long-range elastic interaction-based training strategy. In this strategy, convolutional neural network (CNN) learns the target region under the guidance of the elastic interaction energy between the boundary of the predicted region and that of the actual object. Under the supervision of the proposed loss, the boundary of the predicted region is attracted strongly by the object boundary and tends to stay connected. Experimental results show that our method is able to achieve considerable improvements compared to commonly used pixel-wise loss functions (cross entropy and dice Loss) and other recent loss functions on three retinal vessel segmentation datasets, DRIVE, STARE and CHASEDB1

    Differential effects of age, cytomegalovirus-seropositivity and end-stage renal disease (ESRD) on circulating T lymphocyte subsets

    Get PDF
    The age- and cytomegalovirus (CMV)-seropositivity-related changes in subsets and differentiation of circulating T cells were investigated in end-stage renal disease (ESRD) patients (n = 139) and age-matched healthy individuals. The results show that CMV-seropositivity is associated with expansion of both CD4+ and CD8+ memory T cells which is already observed in young healthy individuals. In addition, CMV-seropositive healthy individuals have a more differentiated memory T cell profile. Only CMV-seropositive healthy individuals showed an age-dependent decrease in CD4+ naïve T cells. The age-related decrease in the number of CD8+ naïve T cells was CMV-independent. In contrast, all ESRD patients showed a profound naïve T-cell lymphopenia at every decade. CMV-seropositivity aggravated the contraction of CD4+ naïve T cells and increased the number of differentiated CD4+ and CD8+ memory T cells. In conclusion, CMV-seropositivity markedly alters the homeostasis of circulating T cells in healthy individuals and aggravates the T cell dysregulation observed in ESRD patients

    Discriminative Localized Sparse Representations for Breast Cancer Screening

    Full text link
    Breast cancer is the most common cancer among women both in developed and developing countries. Early detection and diagnosis of breast cancer may reduce its mortality and improve the quality of life. Computer-aided detection (CADx) and computer-aided diagnosis (CAD) techniques have shown promise for reducing the burden of human expert reading and improve the accuracy and reproducibility of results. Sparse analysis techniques have produced relevant results for representing and recognizing imaging patterns. In this work we propose a method for Label Consistent Spatially Localized Ensemble Sparse Analysis (LC-SLESA). In this work we apply dictionary learning to our block based sparse analysis method to classify breast lesions as benign or malignant. The performance of our method in conjunction with LC-KSVD dictionary learning is evaluated using 10-, 20-, and 30-fold cross validation on the MIAS dataset. Our results indicate that the proposed sparse analyses may be a useful component for breast cancer screening applications

    Robust Multimodal Image Registration Using Deep Recurrent Reinforcement Learning

    Full text link
    The crucial components of a conventional image registration method are the choice of the right feature representations and similarity measures. These two components, although elaborately designed, are somewhat handcrafted using human knowledge. To this end, these two components are tackled in an end-to-end manner via reinforcement learning in this work. Specifically, an artificial agent, which is composed of a combined policy and value network, is trained to adjust the moving image toward the right direction. We train this network using an asynchronous reinforcement learning algorithm, where a customized reward function is also leveraged to encourage robust image registration. This trained network is further incorporated with a lookahead inference to improve the registration capability. The advantage of this algorithm is fully demonstrated by our superior performance on clinical MR and CT image pairs to other state-of-the-art medical image registration methods
    • …
    corecore