3 research outputs found
Physiologically based pharmacokinetic/ pharmacodynamic model for the prediction of morphine brain disposition and analgesia in adults and children
Morphine is a widely used opioid analgesic, which shows large differences in clinical response in children, even when aiming for equivalent plasma drug concentrations. Age-dependent brain disposition of morphine could contribute to this variability, as developmental increase in blood-brain barrier (BBB) P-glycoprotein (Pgp) expression has been reported. In addition, age-related pharmacodynamics might also explain the variability in effect. To assess the influence of these processes on morphine effectiveness, a multi-compartment brain physiologically based pharmacokinetic/pharmacodynamic (PB-PK/PD) model was developed in R (Version 3.6.2). Active Pgp-mediated morphine transport was measured in MDCKII-Pgp cells grown on transwell filters and translated by an in vitro-in vivo extrapolation approach, which included developmental Pgp expression. Passive BBB permeability of morphine and its active metabolite morphine-6-glucuronide (M6G) and their pharmacodynamic parameters were derived from experiments reported in literature. Model simulations after single dose morphine were compared with measured and published concentrations of morphine and M6G in plasma, brain extracellular fluid (ECF) and cerebrospinal fluid (CSF), as well as published drug responses in children (1 day– 16 years) and adults. Visual predictive checks indicated acceptable overlays between simulated and measured morphine and M6G concentration-time profiles and prediction errors were between 1 and -1. Incorporation of active Pgp-mediated BBB transport into the PB-PK/PD model resulted in a 1.3-fold reduced brain exposure in adults, indicating only a modest contribution on brain disposition. Analgesic effect-time profiles could be described reasonably well for older children and adults, but were largely underpredicted for neonates. In summary, an age-appropriate morphine PB-PK/PD model was developed for the prediction of brain pharmacokinetics and analgesic effects. In the neonatal population, pharmacodynamic characteristics, but not brain drug disposition, appear to be altered compared to adults and older children, which may explain the reported differences in analgesic effect
Protein binding of rifampicin is not saturated when using high-dose rifampicin
Background: Higher doses of rifampicin are being investigated as a means to optimize response to this pivotal TB drug. It is unknown whether high-dose rifampicin results in saturation of plasma protein binding and a relative increase in protein-unbound (active) drug concentrations. Objectives: To assess the free fraction of rifampicin based on an in vitro experiment and data froma clinical trial on high-dose rifampicin. Methods: Protein-unbound rifampicin concentrations were measured in human serum spiked with increasing total concentrations (up to 64 mg/L) of rifampicin and in samples obtained by intensive pharmacokinetic sampling of patients who used standard (10 mg/kg daily) or high-dose (35 mg/kg) rifampicin up to steady-state. The performance of total AUC0-24 to predict unbound AUC0-24 was evaluated. Results: The in vitro free fraction of rifampicin remained unaltered (~9%) up to 21 mg/L and increased up to 13% at 41 mg/L and 17% at 64 mg/L rifampicin. The highest (peak) concentration in vivo was 39.1 mg/L (highdose group). The arithmetic mean percentage unbound to total AUC0-24 in vivo was 13.3% (range=8.1%- 24.9%) and 11.1% (range=8.6%-13.6%) for the standard group and the high-dose group, respectively (P=0.214). Prediction of unbound AUC0-24 based on total AUC0-24 resulted in a bias of -0.05% and an imprecision of 13.2%. Conclusions: Plasma protein binding of rifampicin can becomesaturated, but exposures after high-dose rifampicin are not high enough to increase the free fraction in TB patients with normal albumin values. Unbound rifampicin exposures can be predicted from total exposures, even in the higher dose range