50 research outputs found

    Prevailing I292V PB2 mutation in avian influenza H9N2 virus increases viral polymerase function and attenuates IFN-β induction in human cells

    Get PDF
    Adaptation of PB2 protein is important for the establishment of avian influenza viruses in mammalian hosts. Here, we identify I292V as the prevalent mutation in PB2 of circulating avian H9N2 and pandemic H1N1 viruses. The same dominant PB2 mutation is also found in most human isolates of emergent avian H7N9 and H10N8 viruses. In human cells, PB2-292V in H9N2 virus has the combined ability of conferring higher viral polymerase activity and stronger attenuation of IFN-β induction than that of its predecessor PB2-292I. IFN-β attenuation is accompanied by higher binding affinity of PB2-292V for host mitochondrial antiviral signalling protein, an important intermediary protein in the induction of IFN-β. In the mouse in vivo model, PB2-292V mutation increases H9N2 virus replication with ensuing increase in disease severity. Collectively, PB2-292V is a new mammalian adaptive marker that promotes H9N2 virus replication in mammalian hosts with the potential to improve transmission from birds to humans

    Comparison of c-aminobutyric acid accumulation capability in different mung bean (Vigna radiata L.) varieties under heat and relative humidity treatment, and its correlation with endogenous amino acids and polyamines

    Full text link
    peer reviewedIn this study, the accumulation of GABA and its inherent factors across different varieties of mung bean (Vigna radiata L.) in response to heat and relative humidity (HRH) were investigated. Results showed the average GABA content in mung bean varieties was increased 7.52-times following HRH treatment, and the black mung bean variety (A8) exhibited the highest GABA accumulation capability (1.76 to 84.57 mg/100 g DW). From the perspective of GABA shunt metabolites, the free glutamic acid content of mung beans significantly decreased (p < 0.05) after HRH treatment and presented a significant correlation (p < 0.05) with GABA content. In polyamine degradation pathway, although the average levels of spermine and spermidine of mung bean varieties significantly decreased (p < 0.05) after HRH treatment, no significant correlation with GABA content was identified. Hence, the GABA accumulation was predominantly attributed to GABA shunt. Besides, free amino acids including glutamic acid, serine, ornithine, arginine and glycine in mung beans showed a significant positive correlation (p < 0.05) with GABA content and increment following HRH treatment, which suggested that mung beans enriched in these free amino acids might accumulate higher amounts of GABA after HRH treatment and be useful for industrial applications

    Occurrence and characterization of NDM-5-producing Escherichia coli from retail eggs

    Get PDF
    The New Delhi Metallo-β-lactamase (NDM) producing Enterobacterales has been detected from diverse sources but has rarely been reported in retail eggs. In this study, 144 eggshell and 96 egg content samples were collected in 2022 from Guangdong province and were screened for NDM-producing strains. Four Escherichia coli strains (ST3014, ST10, ST1485, and ST14747) recovered from two (1.39%, 2 of 144) eggshells and two (2.08%, 2 of 96) egg content samples were identified as blaNDM−5-positive strains. Oxford Nanopore MinION sequencing and conjugation assays revealed that the blaNDM−5 gene was carried by IncX3 (n = 1), IncI1 (n = 1), and IncHI2 (n = 2). The IncI1-plasmid-carrying blaNDM−5 displayed high homology with one plasmid pEC6563-NDM5 from the human clinic, while the IncHI2 plasmid harboring blaNDM−5 shared highly similar structures with plasmids of animal origin. To the best of our knowledge, this is the first report on the identification of blaNDM−5-positive bacteria in retail eggs. NDM-producing E. coli could be transmitted to humans by the consumption of eggs or direct contact, which could pose a potential threat to human health

    SRSF5‐Mediated Alternative Splicing of M Gene is Essential for Influenza A Virus Replication: A Host‐Directed Target Against Influenza Virus

    Get PDF
    Abstract: Splicing of influenza A virus (IAV) RNA is an essential process in the viral life cycle that involves the co‐opting of host factors. Here, it is demonstrated that induction of host serine and arginine‐rich splicing factor 5 (SRSF5) by IAV facilitated viral replication by enhancing viral M mRNA splicing. Mechanistically, SRSF5 with its RRM2 domain directly bounds M mRNA at conserved sites (M mRNA position 163, 709, and 712), and interacts with U1 small nuclear ribonucleoprotein (snRNP) to promote M mRNA splicing and M2 production. Mutations introduced to the three binding sites, without changing amino acid code, significantly attenuates virus replication and pathogenesis in vivo. Likewise, SRSF5 conditional knockout in the lung protects mice against lethal IAV challenge. Furthermore, anidulafungin, an approved antifungal drug, is identified as an inhibitor of SRSF5 that effectively blocks IAV replication in vitro and in vivo. In conclusion, SRSF5 as an activator of M mRNA splicing promotes IAV replication and is a host‐derived antiviral target

    Mink is a highly susceptible host species to circulating human and avian influenza viruses

    Get PDF
    Pandemic influenza, typically caused by reassortment of human and avian influenza viruses, can result in severe or fatal infections in humans. Timely identification of potential pandemic viruses must be a priority in influenza virus surveillance. However, the range of host species responsible for the generation of novel pandemic influenza viruses remain unclear. In this study, we conducted serological surveys for avian and human influenza virus infections in farmed mink and determined the susceptibility of mink to prevailing avian and human virus subtypes. The results showed that farmed mink were commonly infected with human (H3N2 and H1N1/pdm) and avian (H7N9, H5N6, and H9N2) influenza A viruses. Correlational analysis indicated that transmission of human influenza viruses occurred from humans to mink, and that feed source was a probable route of avian influenza virus transmission to farmed mink. Animal experiments showed that mink were susceptible and permissive to circulating avian and human influenza viruses, and that human influenza viruses (H3N2 and H1N1/pdm), but not avian viruses, were capable of aerosol transmission among mink. These results indicate that farmed mink could be highly permissive “mixing vessels” for the reassortment of circulating human and avian influenza viruses. Therefore, to reduce the risk of emergence of novel pandemic viruses, feeding mink with raw poultry by-products should not be permitted, and epidemiological surveillance of influenza viruses in mink farms should be urgently implemented

    Prevalent Eurasian avian-like H1N1 swine influenza virus with 2009 pandemic viral genes facilitating human infection

    Get PDF
    Pigs are intermediate hosts for the generation of pandemic influenza virus. Thus, systematic surveillance of influenza viruses in pigs is a key measure for prewarning the emergence of the next pandemic influenza. Here, we identified a reassortant EA H1N1 virus possessing pdm/09 and TR-derived internal genes, termed as G4 genotype, which has become predominant in swine populations since 2016. Similar to pdm/09 virus, G4 viruses have all the essential hallmarks of a candidate pandemic virus. Of concern is that swine workers show elevated seroprevalence for G4 virus. Controlling the prevailing G4 EA H1N1 viruses in pigs and close monitoring in human populations, especially the workers in swine industry, should be urgently implemented.Pigs are considered as important hosts or “mixing vessels” for the generation of pandemic influenza viruses. Systematic surveillance of influenza viruses in pigs is essential for early warning and preparedness for the next potential pandemic. Here, we report on an influenza virus surveillance of pigs from 2011 to 2018 in China, and identify a recently emerged genotype 4 (G4) reassortant Eurasian avian-like (EA) H1N1 virus, which bears 2009 pandemic (pdm/09) and triple-reassortant (TR)-derived internal genes and has been predominant in swine populations since 2016. Similar to pdm/09 virus, G4 viruses bind to human-type receptors, produce much higher progeny virus in human airway epithelial cells, and show efficient infectivity and aerosol transmission in ferrets. Moreover, low antigenic cross-reactivity of human influenza vaccine strains with G4 reassortant EA H1N1 virus indicates that preexisting population immunity does not provide protection against G4 viruses. Further serological surveillance among occupational exposure population showed that 10.4% (35/338) of swine workers were positive for G4 EA H1N1 virus, especially for participants 18 y to 35 y old, who had 20.5% (9/44) seropositive rates, indicating that the predominant G4 EA H1N1 virus has acquired increased human infectivity. Such infectivity greatly enhances the opportunity for virus adaptation in humans and raises concerns for the possible generation of pandemic viruses

    Effects of Storage Temperature on Indica-Japonica Hybrid Rice Metabolites, Analyzed Using Liquid Chromatography and Mass Spectrometry

    No full text
    The Yongyou series of indica-japonica hybrid rice has excellent production potential and storage performance. However, little is known about the underlying mechanism of its storage resistance. In this study, Yongyou 1540 rice (Oryza sativa cv. yongyou 1540) was stored at different temperatures, and the storability was validated though measuring nutritional components and apparent change. In addition, a broad-targeted metabolomic approach coupled with liquid chromatography-mass spectrometry was applied to analyze the metabolite changes. The study found that under high temperature storage conditions (35 &deg;C), Yongyou 1540 was not significantly worse in terms of fatty acid value, whiteness value, and changes in electron microscope profile. A total of 19 key differential metabolites were screened, and lipid metabolites related to palmitoleic acid were found to affect the aging of rice. At the same time, two substances, guanosine 3&prime;,5&prime;-cyclophosphate and pipecolic acid, were beneficial to enhance the resistance of rice under harsh storage conditions, thereby delaying the deterioration of its quality and maintaining its quality. Significant regulation of galactose metabolism, alanine, aspartate and glutamate metabolism, butyrate metabolism, and arginine and proline metabolism pathways were probably responsible for the good storage capacity of Yongyou 1540

    The hybrid Pt nanoclusters/Ru nanowires catalysts accelerating alkaline hydrogen evolution reaction

    No full text
    Water electrolysis via alkaline hydrogen evolution reaction (HER) is a promising approach for large-scale production of high-purity hydrogen at a low cost, utilizing renewable and clean energy. However, the sluggish kinetics derived from the high energy barrier of water dissociation impedes seriously its practical application. Herein, a series of hybrid Pt nanoclusters/Ru nanowires (Pt/Ru NWs) catalysts are demonstrated to accelerate alkaline HER. And the optimized Pt/Ru NWs (10 ​% wt Pt) exhibits exceptional performance with an ultralow overpotential (24 ​mV at 10 ​mA ​cm−2), a small Tafel slope (26.3 ​mV dec−1), and long-term stability, outperforming the benchmark commercial Pt/C-JM-20 ​% wt catalyst. This amazing performance also occurred in the alkaline anion-exchange membrane water electrolysis devices, where it delivered a cell voltage of about 1.9 ​V at 1 ​A ​cm−2 and an outstanding stability (more than 100 ​h). The calculations have revealed such a superior performance exhibited by Pt/Ru NWs stems from the formed heterointerfaces, which significantly reduce the energy barrier of the decisive rate step of water dissociation via cooperative-action between Pt cluster and Ru substance. This work provides valuable perspectives for designing advanced materials toward alkaline HER and beyond

    Barley Vinegar Relieves Loperamide-Induced Constipation in Mice via the Modulation of the Gut Microbiota and Serum Metabolism

    No full text
    This study investigated the effect of barley vinegar on constipation by regulating the structure of intestinal microbiota and the level of short-chain fatty acids (SCFAs). BALB/c mice with loperamide-induced constipation were treated with barley vinegar in the intervention. After treatment, constipation-related factors were identified. The effect of barley vinegar on the composition of the intestinal microbiota was evaluated by means of 16S rDNA gene sequencing, and the content of SCFAs in enteral feces was determined via the GC-MS method. Treating constipated mice with barley vinegar accelerated gastrointestinal peristalsis, inhibited the inflammatory response, protected the intestinal barrier, upregulated the production of beneficial intestinal bacteria, and downregulated the production of harmful intestinal bacteria. These therapeutic effects are attributed to reversed gut microbiota dysfunction, which favors the production of intestinal metabolites such as SCFAs. The purgative function of highland barley vinegar may improve the intestinal environment by regulating the balance of intestinal flora and the concentration of SCFAs. In addition, LC-MS metabolomics was used to analyze the effect of barley vinegar on intestinal metabolites in mice with constipation. The results show that the treatment of barley vinegar inhibited the decrease in aspartate, L-threonine, L-serine, L-proline, 3,4-dihydroxymandelic acid, epinephrine, glyceric acid, and 3,4-dihydroxymandelic acid content in intestinal metabolites caused by constipation. 4-2 hydroxy benzene acetic acid and fumaric acid content increased. KEGG pathway analysis showed that digestive system, amino acid and lipid metabolism pathways were important pathways for highland barley vinegar relieving constipation. This study proves that highland barley vinegar mainly regulates lipid metabolism, the digestive system and amino acid metabolism to maintain a steady state, prevent intestinal injury, and improve constipation. In short, this study demonstrates that highland barley vinegar can alleviate constipation in mice and repair colitis damage

    A Review of Plant Selenium-Enriched Proteins/Peptides: Extraction, Detection, Bioavailability, and Effects of Processing

    No full text
    As an essential trace element in the human body, selenium (Se) has various physiological activities, such as antioxidant and anticancer activity. Selenium-enriched proteins/peptides (SePs/SePPs) are the primary forms of Se in plants and animals, and they are the vital carriers of its physiological activities. On the basis of current research, this review systematically describes the extraction methods (aqueous, alkaline, enzymatic, auxiliary, etc.) and detection methods (HPLC–MS/MS, GC–ICP-MS, etc.) for SePs/SePPs in plants. Their bioavailability and bioactivity, and the effect of processing are also included. Our review provides a comprehensive understanding and theoretical guidance for the utilization of selenium-enriched proteins/peptides
    corecore