42 research outputs found
Occurrence and characterization of NDM-5-producing Escherichia coli from retail eggs
The New Delhi Metallo-β-lactamase (NDM) producing Enterobacterales has been detected from diverse sources but has rarely been reported in retail eggs. In this study, 144 eggshell and 96 egg content samples were collected in 2022 from Guangdong province and were screened for NDM-producing strains. Four Escherichia coli strains (ST3014, ST10, ST1485, and ST14747) recovered from two (1.39%, 2 of 144) eggshells and two (2.08%, 2 of 96) egg content samples were identified as blaNDM−5-positive strains. Oxford Nanopore MinION sequencing and conjugation assays revealed that the blaNDM−5 gene was carried by IncX3 (n = 1), IncI1 (n = 1), and IncHI2 (n = 2). The IncI1-plasmid-carrying blaNDM−5 displayed high homology with one plasmid pEC6563-NDM5 from the human clinic, while the IncHI2 plasmid harboring blaNDM−5 shared highly similar structures with plasmids of animal origin. To the best of our knowledge, this is the first report on the identification of blaNDM−5-positive bacteria in retail eggs. NDM-producing E. coli could be transmitted to humans by the consumption of eggs or direct contact, which could pose a potential threat to human health
Tuning the Catalytic Activity of Graphene Nanosheets for Oxygen Reduction Reaction via Size and Thickness Reduction
Currently, the fundamental factors that control the oxygen reduction reaction
(ORR) activity of graphene itself, in particular the dependence of the ORR
activity on the number of exposed edge sites remain elusive, mainly due to
limited synthesis routes of achieving small size graphene. In this work, the
synthesis of low oxygen content (< 2.5 +/-0.2 at %), few layer graphene
nanosheets with lateral dimensions smaller than a few hundred nm was achieved
using a combination of ionic liquid assisted grinding of high purity graphite
coupled with sequential centrifugation. We show for the first time, that the
graphene nanosheets possessing a plethora of edges exhibited considerably
higher electron transfer numbers compared to the thicker graphene
nanoplatelets. This enhanced ORR activity was accomplished by successfully
exploiting the plethora of edges of the nanosized graphene as well as the
efficient electron communication between the active edge sites and the
electrode substrate. The graphene nanosheets were characterized by an onset
potential of -0.13 V vs. Ag/AgCl and a current density of -3.85 mA/cm2 at -1 V,
which represent the best ORR performance ever achieved from an undoped carbon
based catalyst. This work demonstrates how low oxygen content nanosized
graphene synthesized by a simple route can considerably impact the ORR
catalytic activity and hence it is of significance in designing and optimizing
advanced metal-free ORR electrocatalysts.Comment: corresponding author: [email protected], ACS Applied
Materials and Interfaces 201
dynamic opening-book in computer games
Opening-book is an important collection of human knowledge which would play a crucial role in computer games. For the shortcomings of ordinary opening-book, this paper proposes Dynamic Opening-book. Compared with ordinary one, dynamic opening-book introduces the concept of move reliability, processes information feedback, and has self-optimizing and self-learning functions. In addition, we carry out experiments using connect 6 to test dynamic opening-book in this paper. The results demonstrate its superiority. © 2011 IEEE.IEEE Control Systems Society (CSS); IEEE Industrial Electronics Society (IES); Automatic Control Society of Chinese Association of Aeronautics; Simul. Methods Model. Soc. Chin. Assoc. Syst. Simul.; Intell. Control Manage. Soc., Chin. Assoc. Artif. Intell.Opening-book is an important collection of human knowledge which would play a crucial role in computer games. For the shortcomings of ordinary opening-book, this paper proposes Dynamic Opening-book. Compared with ordinary one, dynamic opening-book introduces the concept of move reliability, processes information feedback, and has self-optimizing and self-learning functions. In addition, we carry out experiments using connect 6 to test dynamic opening-book in this paper. The results demonstrate its superiority. © 2011 IEEE
Nitrogen Removal from Mature Landfill Leachate via Anammox Based Processes: A Review
Mature landfill leachate is a complex and highly polluted effluent with a large amount of ammonia nitrogen, toxic components and low biodegradability. Its COD/N and BOD5/COD ratios are low, which is not suitable for traditional nitrification and denitrification processes. Anaerobic ammonia oxidation (anammox) is an innovative biological denitrification process, relying on anammox bacteria to form stable biofilms or granules. It has been extensively used in nitrogen removal of mature landfill leachate due to its high efficiency, low cost and sludge yield. This paper reviewed recent advances of anammox based processes for mature landfill leachate treatment. The state of the art anammox process for mature landfill leachate is systematically described, mainly including partial nitrification–anammox, partial nitrification–anammox coupled denitrification. At the same time, the microbiological analysis of the process operation was given. Anaerobic ammonium oxidation (anammox) has the merit of saving the carbon source and aeration energy, while its practical application is mainly limited by an unstable influent condition, operational control and seasonal temperature variation. To improve process efficiency, it is suggested to develop some novel denitrification processes coupled with anammox to reduce the inhibition of anammox bacteria by mature landfill leachate, and to find cheap new carbon sources (methane, waste fruits) to improve the biological denitrification efficiency of the anammox system
Natural Gas Migration Pathways and Their Influence on Gas Hydrate Enrichment in the Qiongdongnan Basin, South China Sea
2D and 3D seismic data and basin simulation were used to investigate the gas hydrate distribution and natural gas migration pathways in the Qiongdongnan Basin (QDNB). Hydrate-related amplitude anomalies and extensive bottom simulating reflectors (BSRs) were mapped within the uppermost part. Based on their seismic reflection characteristics, the three main types of natural gas migration pathways and their distributions in the QDNB were identified through high-resolution seismic data. Basin modeling was carried out to document the migration efficiency of different migration pathways and their effects on hydrate enrichment. The basin modeling results show the following: (1) Diapirs, fault structures, and fractures constitute the three main types of natural gas migration pathways that transport the thermogenic gas from the deep to shallow layers in the QDNB. (2) The three migration pathways impact hydrate enrichment in different ways. Diapirs and faults contribute significantly to hydrate enrichment due to their higher migration efficiency. In comparison, the migration efficiency of the fracture systems is lower, with minimal benefit to hydrate enrichment. (3) The natural gas hydrate in the QDNB is mainly distributed along the diapirs and deep faults and generally scattered around the fracture system. These conclusions indicate that the migration pathways in the QDNB are regionally distributed and are closely related to hydrate accumulation
Quantitative mapping of DNA phosphorothioatome reveals phosphorothioate heterogeneity of low modification frequency.
Phosphorothioate (PT) modifications of the DNA backbone, widespread in prokaryotes, are first identified in bacterial enteropathogens Escherichia coli B7A more than a decade ago. However, methods for high resolution mapping of PT modification level are still lacking. Here, we developed the PT-IC-seq technique, based on iodine-induced selective cleavage at PT sites and high-throughput next generation sequencing, as a mean to quantitatively characterizing the genomic landscape of PT modifications. Using PT-IC-seq we foud that most PT sites are partially modified at a lower PT frequency (< 5%) in E. coli B7A and Salmonella enterica serovar Cerro 87, and both show a heterogeneity pattern of PT modification similar to those of the typical methylation modification. Combining the iodine-induced cleavage and absolute quantification by droplet digital PCR, we developed the PT-IC-ddPCR technique to further measure the PT modification level. Consistent with the PT-IC-seq measurements, PT-IC-ddPCR analysis confirmed the lower PT frequency in E. coli B7A. Our study has demonstrated the heterogeneity of PT modification in the bacterial population and we also established general tools for rigorous mapping and characterization of PT modification events at whole genome level. We describe to our knowledge the first genome-wide quantitative characterization of PT landscape and provides appropriate strategies for further functional studies of PT modification