285 research outputs found

    Co-inoculation of prostate cancer cells with U937 enhances tumor growth and angiogenesis in vivo

    Full text link
    Tumor-associated macrophages (TAMs) have been implicated in promoting tumor growth and development. Here we present evidence that demonstrates that co-inoculation of male athymic nude mice with PC-3 prostate cancer cells and U937 promonocytic cells enhances tumor growth and increases tumor angiogenesis.Male athymic nude mice were co-inoculated with PC-3 and U937 cells (control or IL-4 stimulated) and tumor growth was monitored over time. Immunohistochemical analysis of tumor specimens was performed for proliferation markers (e.g., Ki67) and the effects of IL-4 stimulation on U937 cells were analyzed for chemokine expression.The presence of U937 cells increased the rate of tumor growth in vivo and stimulated increased microvascular density within the tumor bed. Stimulation of U937 cells with IL-4 resulted in a significant increase in several pro-angiogenic and pro-tumor chemokines (e.g., CCL2).Co-inoculation increases prostate cancer growth via upregulation of chemokines that induce angiogenesis within the tumor. J. Cell. Biochem. 103: 1–8, 2008. © 2007 Wiley-Liss, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/57522/1/21379_ftp.pd

    Primary Xenografts of Human Prostate Tissue as a Model to Study Angiogenesis Induced by Reactive Stroma

    Get PDF
    Characterization of the mechanism(s) of androgen-driven human angiogenesis could have significant implications for modeling new forms of anti-angiogenic therapies for CaP and for developing targeted adjuvant therapies to improve efficacy of androgen-deprivation therapy. However, models of angiogenesis by human endothelial cells localized within an intact human prostate tissue architecture are until now extremely limited. This report characterizes the burst of angiogenesis by endogenous human blood vessels in primary xenografts of fresh surgical specimens of benign prostate or prostate cancer (CaP) tissue that occurs between Days 6–14 after transplantation into SCID mice pre-implanted with testosterone pellets. The wave of human angiogenesis was preceded by androgen-mediated up-regulation of VEGF-A expression in the stromal compartment. The neo-vessel network anastomosed to the host mouse vascular system between Days 6–10 post-transplantation, the angiogenic response ceased by Day 15, and by Day 30 the vasculature had matured and stabilized, as indicated by a lack of leakage of serum components into the interstitial tissue space and by association of nascent endothelial cells with mural cells/pericytes. The angiogenic wave was concurrent with the appearance of a reactive stroma phenotype, as determined by staining for α-SMA, Vimentin, Tenascin, Calponin, Desmin and Masson's trichrome, but the reactive stroma phenotype appeared to be largely independent of androgen availability. Transplantation-induced angiogenesis by endogenous human endothelial cells present in primary xenografts of benign and malignant human prostate tissue was preceded by induction of androgen-driven expression of VEGF by the prostate stroma, and was concurrent with and the appearance of a reactive stroma phenotype. Androgen-modulated expression of VEGF-A appeared to be a causal regulator of angiogenesis, and possibly of stromal activation, in human prostate xenografts

    Adenoviral-Mediated Endothelial Precursor Cell Delivery of Soluble CD115 Suppresses Human Prostate Cancer Xenograft Growth in Mice

    Get PDF
    Prostate cancer tumor growth and neovascularization is promoted by an interplay between migratory tumor stromal cells such as specialized tumor-associated macrophages (TAMs) and circulating endothelial precursor cells (CEPs). As vehicles for tumor therapy, human CEPs are relatively easy to isolate from peripheral blood, are able to proliferate long-term in vitro, are amenable to viral manipulation, and preferentially home to regions of ischemia found in growing tumors. We show here that human peripheral blood CEPs expanded ex vivo migrate to prostate cancer cells in vitro and efficiently home to human prostate tumor xenografts in vivo. Infection of precursors ex vivo with an adenovirus constructed to secrete a soluble form of the colony-stimulating factor-1 receptor CD115 that inhibits macrophage viability and migration in vitro significantly decreases the number of TAMs in xenografts (p < .05), reduces proliferation (p < .01) and vascular density (p < .03), and suppresses the growth of xenografts (p < .03). These data show for the first time that targeting stromal cell processes with cellular therapy has the potential to retard prostate tumor growth

    Leukocytic promotion of prostate cellular proliferation

    Full text link
    BACKGROUND Histological evidence of pervasive inflammatory infiltrate has been noted in both benign prostatic hyperplasia/hypertrophy (BPH) and prostate cancer (PCa). Cytokines known to attract particular leukocyte subsets are secreted from prostatic stroma consequent to aging and also from malignant prostate epithelium. Therefore, we hypothesized that leukocytes associated with either acute or chronic inflammation attracted to the prostate consequent to aging or tumorigenesis may promote the abnormal cellular proliferation associated with BPH and PCa. METHODS An in vitro system designed to mimic the human prostatic microenvironment incorporating prostatic stroma (primary and immortalized prostate stromal fibroblasts), epithelium (N15C6, BPH-1, LNCaP, and PC3 cells), and inflammatory infiltrate (HL-60 cells, HH, and Molt-3 T-lymphocytes) was developed. Modified Boyden chamber assays were used to test the ability of prostate stromal and epithelial cells to attract leukocytes and to test the effect of leukocytes on prostate cellular proliferation. Antibody arrays were used to identify leukocyte-secreted cytokines mediating prostate cellular proliferation. RESULTS Leukocytic cells migrated towards both prostate stromal and epithelial cells. CD4+ T-lymphocytes promoted the proliferation of both transformed and non-transformed prostate epithelial cell lines tested, whereas CD8+ T-lymphocytes as well as dHL-60M macrophagic and dHL-60N neutrophilic cells selectively promoted the proliferation of PCa cells. CONCLUSIONS The results of these studies show that inflammatory cells can be attracted to the prostate tissue microenvironment and can selectively promote the proliferation of non-transformed or transformed prostate epithelial cells, and are consistent with differential role(s) for inflammatory infiltrate in the etiologies of benign and malignant proliferative disease in the prostate. Prostate 70: 377–389, 2010. © 2009 Wiley-Liss, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/65026/1/21071_ftp.pd

    ADAMTS1 alters blood vessel morphology and TSP1 levels in LNCaP and LNCaP-19 prostate tumors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Decreased expression of the angiogenesis inhibitor ADAMTS1 (ADAM metallopeptidase with thrombospondin type 1 motif, 1) has previously been reported during prostate cancer progression. The aim of this study was to investigate the function of ADAMTS1 in prostate tumors.</p> <p>Methods</p> <p>ADAMTS1 was downregulated by shRNA technology in the human prostate cancer cell line LNCaP (androgen-dependent), originally expressing ADAMTS1, and was upregulated by transfection in its subline LNCaP-19 (androgen-independent), expressing low levels of ADAMTS1. Cells were implanted subcutaneously in nude mice and tumor growth, microvessel density (MVD), blood vessel morphology, pericyte coverage and thrombospondin 1 (TSP1) were studied in the tumor xenografts.</p> <p>Results</p> <p>Modified expression of ADAMTS1 resulted in altered blood vessel morphology in the tumors. Low expression levels of ADAMTS1 were associated with small diameter blood vessels both in LNCaP and LNCaP-19 tumors, while high levels of ADAMTS1 were associated with larger vessels. In addition, TSP1 levels in the tumor xenografts were inversely related to ADAMTS1 expression. MVD and pericyte coverage were not affected. Moreover, upregulation of ADAMTS1 inhibited tumor growth of LNCaP-19, as evidenced by delayed tumor establishment. In contrast, downregulation of ADAMTS1 in LNCaP resulted in reduced tumor growth rate.</p> <p>Conclusions</p> <p>The present study demonstrates that ADAMTS1 is an important regulatory factor of angiogenesis and tumor growth in prostate tumors, where modified ADAMTS1 expression resulted in markedly changed blood vessel morphology, possibly related to altered TSP1 levels.</p

    Mini Review on the Use of Clinical Cancer Registers for Prostate Cancer: The National Prostate Cancer Register (NPCR) of Sweden

    Get PDF
    Given the increasing prevalence of cancer, it is vital to systematically collect data in order to monitor disease trends and quality of cancer care. For this purpose, clinical cancer registries have been developed in some countries. These registers are intended to be used as a basis for quality assurance and quality improvement, but they also constitute a rich resource of real world data for research. The aim of this mini-review was to describe the structure and the organization of the National Prostate Cancer Register (NPCR) with some examples on how data in NPCR have affected prostate cancer care in Sweden

    High tumour islet macrophage infiltration correlates with improved patient survival but not with EGFR mutations, gene copy number or protein expression in resected non-small cell lung cancer

    Get PDF
    The purpose of this study was to investigate the prognostic value of tumour-associated macrophages with a focus on micro-anatomical localisation and determine whether molecular changes of the epidermal growth factor receptor (EGFR) are related to macrophage infiltration in resected non-small cell lung cancer (NSCLC). One hundred and forty-four patients were included in this study. Immunohistochemistry was used to identify CD68+ macrophages in the tumour islet and surrounding stroma. Epidermal growth factor receptor mutations were studied by direct sequencing. The EGFR gene copy number and protein expression were analysed by fluorescence in situ hybridisation and immunohistochemistry. Patients with a high tumour islet macrophage density survived longer than did the patient with a low tumour islet macrophage density (5-year overall survival rate was 63.9 vs 38.9%, P=0.0002). A multivariate Cox proportional hazard analysis revealed that the tumour islet macrophage count was an independent prognostic factor for survival (hazard ratio 0.471, 95% confidence interval 0.300–0.740). However, EGFR mutations, gene copy number, and protein expression were not related to the macrophage infiltration. In conclusion, tumour islet macrophage infiltration was identified as a strong favourable independent prognostic marker for survival but not correlated with the molecular changes of the EGFR in patients with resected NSCLC

    Endothelial cells stimulate growth of normal and cancerous breast epithelial cells in 3D culture

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Epithelial-stromal interaction provides regulatory signals that maintain correct histoarchitecture and homeostasis in the normal breast and facilitates tumor progression in breast cancer. However, research on the regulatory role of the endothelial component in the normal and malignant breast gland has largely been neglected. The aim of the study was to investigate the effects of endothelial cells on growth and differentiation of human breast epithelial cells in a three-dimensional (3D) co-culture assay.</p> <p>Methods</p> <p>Breast luminal and myoepithelial cells and endothelial cells were isolated from reduction mammoplasties. Primary cells and established normal and malignant breast cell lines were embedded in reconstituted basement membrane in direct co-culture with endothelial cells and by separation of Transwell filters. Morphogenic and phenotypic profiles of co-cultures was evaluated by phase contrast microscopy, immunostaining and confocal microscopy.</p> <p>Results</p> <p>In co-culture, endothelial cells stimulate proliferation of both luminal- and myoepithelial cells. Furthermore, endothelial cells induce a subpopulation of luminal epithelial cells to form large acini/ducts with a large and clear lumen. Endothelial cells also stimulate growth and cloning efficiency of normal and malignant breast epithelial cell lines. Transwell and gradient co-culture studies show that endothelial derived effects are mediated - at least partially - by soluble factors.</p> <p>Conclusion</p> <p>Breast endothelial cells - beside their role in transporting nutrients and oxygen to tissues - are vital component of the epithelial microenvironment in the breast and provide proliferative signals to the normal and malignant breast epithelium. These growth promoting effects of endothelial cells should be taken into consideration in breast cancer biology.</p

    Activation of Thromboxane A2 Receptor (TP) Increases the Expression of Monocyte Chemoattractant Protein -1 (MCP-1)/Chemokine (C-C motif) Ligand 2 (CCL2) and Recruits Macrophages to Promote Invasion of Lung Cancer Cells

    Get PDF
    Thromboxane synthase (TXAS) and thromboxane A2 receptor (TP), two critical components for thromboxane A2 (TXA2) signaling, have been suggested to be involved in cancer invasion and metastasis. However, the mechanisms by which TXA2 promotes these processes are still unclear. Here we show that TXA2 mimetic, I-BOP, induced monocyte chemoattractant protein -1(MCP-1)/chemokine (C-C motif) ligand 2 (CCL2) expression at both mRNA and protein levels in human lung adenocarcinoma A549 cells stably over-expressing TP receptor α isoform (A549-TPα). The induction of MCP-1 was also found in other lung cancer cells H157 and H460 that express relatively high levels of endogenous TP. Using specific inhibitors of several signaling molecules and promoter/luciferase assay, we identified that transcription factor SP1 mediates I-BOP-induced MCP-1 expression. Furthermore, supernatants from I-BOP-treated A549-TPα cells enhanced MCP-1-dependent migration of RAW 264.7 macrophages. Moreover, co-culture of A549 cells with RAW 264.7 macrophages induced expression of MMPs, VEGF and MCP-1 genes, and increased the invasive potential in A549 cells. These findings suggest that TXA2 may stimulate invasion of cancer cells through MCP-1-mediated macrophage recruitment

    VERDICT-AMICO: Ultrafast fitting algorithm for non-invasive prostate microstructure characterization.

    Get PDF
    VERDICT (vascular, extracellular and restricted diffusion for cytometry in tumours) estimates and maps microstructural features of cancerous tissue non-invasively using diffusion MRI. The main purpose of this study is to address the high computational time of microstructural model fitting for prostate diagnosis, while retaining utility in terms of tumour conspicuity and repeatability. In this work, we adapt the accelerated microstructure imaging via convex optimization (AMICO) framework to linearize the estimation of VERDICT parameters for the prostate gland. We compare the original non-linear fitting of VERDICT with the linear fitting, quantifying accuracy with synthetic data, and computational time and reliability (performance and precision) in eight patients. We also assess the repeatability (scan-rescan) of the parameters. Comparison of the original VERDICT fitting versus VERDICT-AMICO showed that the linearized fitting (1) is more accurate in simulation for a signal-to-noise ratio of 20 dB; (2) reduces the processing time by three orders of magnitude, from 6.55 seconds/voxel to 1.78 milliseconds/voxel; (3) estimates parameters more precisely; (4) produces similar parametric maps and (5) produces similar estimated parameters with a high Pearson correlation between implementations, r &lt;sup&gt;2&lt;/sup&gt;  &gt; 0.7. The VERDICT-AMICO estimates also show high levels of repeatability. Finally, we demonstrate that VERDICT-AMICO can estimate an extra diffusivity parameter without losing tumour conspicuity and retains the fitting advantages. VERDICT-AMICO provides microstructural maps for prostate cancer characterization in seconds
    corecore