273 research outputs found
Approaching Theoretical Performances of Electrocatalytic Hydrogen Peroxide Generation by Cobalt-Nitrogen Moieties
Electrocatalytic oxygen reduction reaction (ORR) has been intensively studied for environmentally benign applications. However, insufficient understanding of ORR 2 e−-pathway mechanism at the atomic level inhibits rational design of catalysts with both high activity and selectivity, causing concerns including catalyst degradation due to Fenton reaction or poor efficiency of H2O2 electrosynthesis. Herein we show that the generally accepted ORR electrocatalyst design based on a Sabatier volcano plot argument optimises activity but is unable to account for the 2 e−-pathway selectivity. Through electrochemical and operando spectroscopic studies on a series of CoNx/carbon nanotube hybrids, a construction-driven approach based on an extended “dynamic active site saturation” model that aims to create the maximum number of 2 e− ORR sites by directing the secondary ORR electron transfer towards the 2 e− intermediate is proven to be attainable by manipulating O2 hydrogenation kinetics
Nanodiamond photocathodes for MPGD-based single photon detectors at future EIC
We are developing gaseous photon detectors for Cherenkov imaging applications
in the experiments at the future Electron Ion Collider. CsI, converting photons
in the far ultraviolet range, is, so far, the only photoconverter compatible
with the operation of gaseous detectors. It is very delicate to handle due to
its hygroscopic nature: the absorbed water vapour decomposes the CsI molecule.
In addition, its quantum efficiency degrades under ion bombardment. These are
the key reasons to quest for novel, less delicate materials for photocathodes
adequate for gaseous photon detectors. Layers of hydrogenated nanodiamond
particles have recently been proposed as an alternative material and have shown
promising characteristics. The performance of nanodiamond photocathodes coupled
to thick GEM-based detectors is the object of our ongoing R\&D. The first phase
of these studies includes the characterization of thick GEM coated with
nanodiamond layers and the robustness of its photoconverting properties with
respect to the bombardment by ions from the multiplication process in the
gaseous detector. The approach is described in detail as well as all the
results obtained so far within these exploratory studies
The novel XYU-GEM to resolve ambiguities
Removing ambiguities within a single stage becomes crucial when one can not
use multiple detectors behind each other to resolve them which naturally is the
case for neutral radiation. An example would be RICH detectors. Commonly
pixilated readout is choosen for this purpose. However, this causes a
remarkable increase in quantity of channels and does not scale up well.
Therefore, the XYU-GEM was proposed as a three coordinate strip-readout which
is combined with a triple GEM detector. The readout complements a common XY
readout with an additional projection which is tilted by 45{\deg}. The
overdetermination due to three projections can be used to resovle ambiguities.
Following the detector design will be explained, first measurements discussed
to understand the response of the detector and a way to change the charge
sharing without changing the manufacturing parameters of the readout
Urinary Aminopeptidase Activities as Early and Predictive Biomarkers of Renal Dysfunction in Cisplatin-Treated Rats
This study analyzes the fluorimetric determination of alanyl- (Ala), glutamyl- (Glu), leucyl-cystinyl- (Cys) and aspartyl-aminopeptidase (AspAp) urinary enzymatic activities as early and predictive biomarkers of renal dysfunction in cisplatin-treated rats. Male Wistar rats (n = 8 each group) received a single subcutaneous injection of either saline or cisplatin 3.5 or 7 mg/kg, and urine samples were taken at 0, 1, 2, 3 and 14 days after treatment. In urine samples we determined Ala, Glu, Cys and AspAp activities, proteinuria, N-acetyl-β-D-glucosaminidase (NAG), albumin, and neutrophil gelatinase-associated lipocalin (NGAL). Plasma creatinine, creatinine clearance and renal morphological variables were measured at the end of the experiment. CysAp, NAG and albumin were increased 48 hours after treatment in the cisplatin 3.5 mg/kg treated group. At 24 hours, all urinary aminopeptidase activities and albuminuria were significantly increased in the cisplatin 7 mg/kg treated group. Aminopeptidase urinary activities correlated (p0.259) with plasma creatinine, creatinine clearance and/or kidney weight/body weight ratio at the end of the experiment and they could be considered as predictive biomarkers of renal injury severity. ROC-AUC analysis was made to study their sensitivity and specificity to distinguish between treated and untreated rats at day 1. All aminopeptidase activities showed an AUC>0.633. We conclude that Ala, Cys, Glu and AspAp enzymatic activities are early and predictive urinary biomarkers of the renal dysfunction induced by cisplatin. These determinations can be very useful in the prognostic and diagnostic of renal dysfunction in preclinical research and clinical practice.This study was supported by a grant (R1/12/2010/66) from the University of Jaén with the participation of Caja Rural of Jaén, and from the Carlos III Health Institute of the Spanish Ministry of Health and Consumer Affairs (Red de Investigación Renal, REDinREN RD06/0016/0017 and RD07/0016/2008), “FEDER una manera de hacer Europa.
Structural analysis of the Ss sialoglycoprotein specific for Henshaw blood group from human erythrocyte membranes
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/66122/1/j.1432-1033.1984.tb08155.x.pd
Precise timing and recent advancements with segmented anode PICOSEC Micromegas prototypes
Timing information in current and future accelerator facilities is important
for resolving objects (particle tracks, showers, etc.) in extreme large
particles multiplicities on the detection systems. The PICOSEC Micromegas
detector has demonstrated the ability to time 150\,GeV muons with a sub-25\,ps
precision. Driven by detailed simulation studies and a phenomenological model
which describes stochastically the dynamics of the signal formation, new
PICOSEC designs were developed that significantly improve the timing
performance of the detector. PICOSEC prototypes with reduced drift gap size
(\SI{119}{\micro\metre}) achieved a resolution of 45\,ps in timing single
photons in laser beam tests (in comparison to 76\,ps of the standard PICOSEC
detector). Towards large area detectors, multi-pad PICOSEC prototypes with
segmented anodes has been developed and studied. Extensive tests in particle
beams revealed that the multi-pad PICOSEC technology provides also very precise
timing, even when the induced signal is shared among several neighbouring pads.
Furthermore, new signal processing algorithms have been developed, which can be
applied during data acquisition and provide real time, precise timing.Comment: 5 pages, 3 figures, 12th International Conference on Position
Sensitive Detector
Chromosomal radiosensitivity in head and neck cancer patients: evidence for genetic predisposition?
The association between chromosomal radiosensitivity and genetic predisposition to head and neck cancer was investigated in this study. In all, 101 head and neck cancer patients and 75 healthy control individuals were included in the study. The G2 assay was used to measure chromosomal radiosensitivity. The results demonstrated that head and neck cancer patients had a statistically higher number of radiation-induced chromatid breaks than controls, with mean values of 1.23 and 1.10 breaks per cell, respectively (P<0.001). Using the 90th percentile of the G2 scores of the healthy individuals as a cutoff value for chromosomal radiosensitivity, 26% of the cancer patients were radiosensitive compared with 9% of the healthy controls (P=0.008). The mean number of radiation-induced chromatid breaks and the proportion of radiosensitive individuals were highest for oral cavity cancer patients (1.26 breaks per cell, 38%) and pharynx cancer patients (1.27 breaks per cell, 35%). The difference between patients and controls was most pronounced in the lower age group (⩽50 years, 1.32 breaks per cell, 38%) and in the non- and light smoking patient group (⩽10 pack-years, 1.28 breaks per cell, 46%). In conclusion, enhanced chromosomal radiosensitivity is a marker of genetic predisposition to head and neck cancer, and the genetic contribution is highest for oral cavity and pharynx cancer patients and for early onset and non- and light smoking patients
African trypanosomes evade immune clearance by O-glycosylation of the VSG surface coat
The African trypanosome, Trypanosoma brucei spp., is a paradigm for antigenic variation, the orchestrated alteration of cell surface molecules to evade host immunity. The parasite elicits robust antibody-mediated immune responses to its Variant Surface Glycoprotein (VSG) coat, but evades immune clearance by repeatedly accessing a large genetic VSG repertoire and “switching” to antigenically distinct VSGs. This persistent immune evasion has been ascribed exclusively to amino acid variance on the VSG surface presented by a conserved underlying protein architecture. We establish here that this model does not account for the scope of VSG structural and biochemical diversity. The 1.4Å resolution crystal structure of variant VSG3 manifests heretofore unappreciated divergence in the tertiary fold and oligomeric state. The structure also reveals an O linked carbohydrate on the top surface of VSG3, a modification previously unknown in African trypanosomes. Mass spectrometric analysis indicates that this O -glycosylation site is heterogeneously occupied in VSG3 by 0 to 3 hexose residues and is also present in other VSGs. We demonstrate that this O -glycosylation increases parasite virulence by impairing the generation of protective immunity. These data alter the paradigm of antigenic variation by the African trypanosome, expanding VSG variability beyond amino acid sequence to include surface posttranslational modifications with immunomodulatory impact
- …