73 research outputs found
The Assembly of Nonadhesive Fibrinogen Matrices Depends on the αC Regions of the Fibrinogen Molecule
Adsorption of fibrinogen on fibrin clots and other surfaces strongly reduces integrin-mediated adhesion of platelets and leukocytes with implications for the surface-mediated control of thrombus growth and blood compatibility of biomaterials. The underlying mechanism of this process is surface-induced aggregation of fibrinogen, resulting in the assembly of a nanoscale multilayered matrix. The matrix is extensible, which makes it incapable of transducing strong mechanical forces via cellular integrins, resulting in insufficient intracellular signaling and weak cell adhesion. To determine the mechanism of the multilayer formation, the physical and adhesive properties of fibrinogen matrices prepared from human plasma fibrinogen (hFg), recombinant normal (rFg), and fibrinogen with the truncated αC regions (FgAα251) were compared. Using atomic force microscopy and force spectroscopy, we show that whereas hFg and rFg generated the matrices with a thickness of ∼8 nm consisting of 7–8 molecular layers, the deposition of FgAα251 was terminated at two layers, indicating that the αC regions are essential for the multilayer formation. The extensibility of the matrix prepared from FgAα251 was 2-fold lower than that formed from hFg and rFg. In agreement with previous findings that cell adhesion inversely correlates with the extensibility of the fibrinogen matrix, the less extensible FgAα251 matrix and matrices generated from human fibrinogen variants lacking the αC regions supported sustained adhesion of leukocytes and platelets. The persistent adhesiveness of matrices formed from fibrinogen derivatives without the αC regions may have implications for conditions in which elevated levels of these molecules are found, including vascular pathologies, diabetes, thrombolytic therapy, and dysfibrinogenemia
The potential for immunoglobulins and host defense peptides (HDPs) to reduce the use of antibiotics in animal production
Abstract Innate defense mechanisms are aimed at quickly containing and removing infectious microorganisms and involve local stromal and immune cell activation, neutrophil recruitment and activation and the induction of host defense peptides (defensins and cathelicidins), acute phase proteins and complement activation. As an alternative to antibiotics, innate immune mechanisms are highly relevant as they offer rapid general ways to, at least partially, protect against infections and enable the build-up of a sufficient adaptive immune response. This review describes two classes of promising alternatives to antibiotics based on components of the innate host defense. First we describe immunoglobulins applied to mimic the way in which they work in the newborn as locally acting broadly active defense molecules enforcing innate immunity barriers. Secondly, the potential of host defense peptides with different modes of action, used directly, induced in situ or used as vaccine adjuvants is described
Interdomain Interactions Control Ca2+-Dependent Potentiation in the Cation Channel TRPV4
Several Ca2+-permeable channels, including the non-selective cation channel TRPV4, are subject to Ca2+-dependent facilitation. Although it has been clearly demonstrated in functional experiments that calmodulin (CaM) binding to intracellular domains of TRP channels is involved in this process, the molecular mechanism remains elusive. In this study, we provide experimental evidence for a comprehensive molecular model that explains Ca2+-dependent facilitation of TRPV4. In the resting state, an intracellular domain from the channel N terminus forms an autoinhibitory complex with a C-terminal domain that includes a high-affinity CaM binding site. CaM binding, secondary to rises in intracellular Ca2+, displaces the N-terminal domain which may then form a homologous interaction with an identical domain from a second subunit. This represents a novel potentiation mechanism that may also be relevant in other Ca2+-permeable channels
G-protein signaling: back to the future
Heterotrimeric G-proteins are intracellular partners of G-protein-coupled receptors (GPCRs). GPCRs act on inactive Gα·GDP/Gβγ heterotrimers to promote GDP release and GTP binding, resulting in liberation of Gα from Gβγ. Gα·GTP and Gβγ target effectors including adenylyl cyclases, phospholipases and ion channels. Signaling is terminated by intrinsic GTPase activity of Gα and heterotrimer reformation — a cycle accelerated by ‘regulators of G-protein signaling’ (RGS proteins). Recent studies have identified several unconventional G-protein signaling pathways that diverge from this standard model. Whereas phospholipase C (PLC) β is activated by Gαq and Gβγ, novel PLC isoforms are regulated by both heterotrimeric and Ras-superfamily G-proteins. An Arabidopsis protein has been discovered containing both GPCR and RGS domains within the same protein. Most surprisingly, a receptor-independent Gα nucleotide cycle that regulates cell division has been delineated in both Caenorhabditis elegans and Drosophila melanogaster. Here, we revisit classical heterotrimeric G-protein signaling and explore these new, non-canonical G-protein signaling pathways
- …