5 research outputs found

    Clostridium difficile PCR Ribotypes in Calves, Canada

    Get PDF
    C. difficile, including epidemic PCR ribotypes 017 and 027, were isolated from dairy calves in Canada

    Methods for detecting seasonal influenza epidemics using a school absenteeism surveillance system

    No full text
    Abstract Background School absenteeism data have been collected daily by the public health unit in Wellington-Dufferin-Guelph, Ontario since 2008. To date, a threshold-based approach has been implemented to raise alerts for community-wide and within-school illness outbreaks. We investigate several statistical modelling approaches to using school absenteeism for influenza surveillance at the regional level, and compare their performances using two metrics. Methods Daily absenteeism percentages from elementary and secondary schools, and report dates for influenza cases, were obtained from Wellington-Dufferin-Guelph Public Health. Several absenteeism data aggregations were explored, including using the average across all schools or only using schools of one type. A 10% absence threshold, exponentially weighted moving average model, logistic regression with and without seasonality terms, day of week indicators, and random intercepts for school year, and generalized estimating equations were used as epidemic detection methods for seasonal influenza. In the regression models, absenteeism data with various lags were used as predictor variables, and missing values in the datasets used for parameter estimation were handled either by deletion or linear interpolation. The epidemic detection methods were compared using a false alarm rate (FAR) as well as a metric for alarm timeliness. Results All model-based epidemic detection methods were found to decrease the FAR when compared to the 10% absence threshold. Regression models outperformed the exponentially weighted moving average model and including seasonality terms and a random intercept for school year generally resulted in fewer false alarms. The best-performing model, a seasonal logistic regression model with random intercept for school year and a day of week indicator where parameters were estimated using absenteeism data that had missing values linearly interpolated, produced a FAR of 0.299, compared to the pre-existing threshold method which at best gave a FAR of 0.827. Conclusions School absenteeism can be a useful tool for alerting public health to upcoming influenza epidemics in Wellington-Dufferin-Guelph. Logistic regression with seasonality terms and a random intercept for school year was effective at maximizing true alarms while minimizing false alarms on historical data from this region

    RESEARCH Clostridium difficile PCR Ribotypes in Calves, Canada

    No full text
    We investigated Clostridium difficile in calves and the similarity between bovine and human C. difficile PCR ribotypes by conducting a case-control study of calves from 102 dairy farms in Canada. Fecal samples from 144 calves with diarrhea and 134 control calves were cultured for C. difficile and tested with an ELISA for C. difficile toxins A and B. C. difficile was isolated from 31 of 278 calves: 11 (7.6%) of 144 with diarrhea and 20 (14.9%) of 134 controls (p = 0.009). Toxins were detected in calf feces from 58 (56.8%) of 102 farms, 57 (39.6%) of 144 calves with diarrhea, and 28 (20.9%) of 134 controls (p = 0.0002). PCR ribotyping of 31 isolates showed 8 distinct patterns; 7 have been identified in humans, 2 of which have been associated with outbreaks of severe disease (PCR types 017 and 027). C. difficile may be associated with calf diarrhea, and cattle may be reservoirs of C. difficile for humans. Clostridium difficile, a gram-positive, spore-forming, anaerobic bacterium, has been associated with pseudomembranous colitis and nosocomial and antimicrobial drug–associated diarrhea in humans (1). Recently, research has suggested that the frequency, severity, and relapse of C. difficile–associated disease (CDAD) are increasing in Europe and North America (1,2). The most common risk factor for CDAD in humans is the use of antimicrobial drugs, particularly fluoroquinolones (3–5). Of recent concern, hypervirulent C. difficile strains have been associated with outbreaks of severe CDAD (2,6). The pathophysiology of CDAD involves colonization of the intestinal tract with C. difficile and production of its toxins (7–9). At least 3 cytotoxins are currently described for C. difficile: toxins A and B (glucosyltransfersases) and a binary toxin (CDT, ADP-ribosyltransferase) (10). Toxin
    corecore