124 research outputs found

    Electromagnetic Field Enhancement in Bloch Surface Waves

    Full text link
    We present a systematic comparison between guided modes supported by slab waveguides and Bloch Surface Waves (BSWs) propagating at the surface of truncated periodic multilayers. We show that, contrary to common belief, the best surface field enhancement achievable for guided modes in a slab waveguide is comparable to that observed for BSWs. At the same time, we demonstrate that, if one is interested in maximizing the electromagnetic energy density at a generic point of a dielectric planar structure, BSWs are often preferable to modes in which light is confined uniquely by total internal reflection. Since these results are wavelength independent and have been obtained by considering a very wide range of refractive indices of the structure constituent materials, we believe they can prove helpful in the design of future structures for the control and the enhancement of the light-matter interaction.Comment: 8 pages, 6 figure

    Optical resonators based on Bloch surface waves

    Full text link
    A few recent works suggest the possibility of controlling light propagation at the interface of periodic multilayers supporting Bloch surface waves (BSWs), but optical resonators based on BSWs are yet to demonstrate. Here we discuss the feasibility of exploiting guided BSWs in a ring resonator configuration. In particular, we investigate the main issues related to the design of these structures, and we discuss about their limitations in terms of quality factors and dimensions. We believe these results might be useful for the development of a complete BSW-based platform for application ranging from optical sensing to the study of the light-matter interaction in micro and nano structures.Comment: 10 pages, 10 figures. To be published in JOSA

    Long-range Bloch Surface Waves in Photonic Crystal Ridges

    Full text link
    We theoretically study light propagation in guided Bloch surface waves (BSWs) supported by photonic crystal ridges. We demonstrate that low propagation losses can be achieved just by a proper design of the multilayer to obtain photonic band gaps for both light polarizations. We present a design strategy based on a Fourier analysis that allows one to obtain intrinsic losses as low as 5 dB/km for a structure operating in the visible spectral range. These results clarify the limiting factors to light propagation in guided BSWs and represent a fundamental step towards the development of BSW-based integrated optical platforms.Comment: v2: figures revise

    Coherence in parametric fluorescence

    Full text link
    We investigate spontaneous four wave mixing (SFWM) in a single-channel side-coupled integrated spaced sequence of resonators (SCISSOR). Analytic expressions for the number of photon pairs generated, as well as the biphoton wave function (joint spectral amplitude) describing the pairs, are derived and numerically computed for different pump pulse durations and numbers of ring resonators. In the limit of a long input pump pulse, we show a strong analogy between super-linear scaling of generation efficiency with respect to the number of rings in the structure and Dicke superradiance. More generally, we discuss in detail the factors that influence the shape of the biphoton wave function, as well as the conditions for observing super-SFWM

    A Green function method to study thin diffraction gratings

    Full text link
    The anomalous features in diffraction patterns first observed by Wood over a century ago have been the subject of many investigations, both experimental and theoretical. The sharp, narrow structures - and the large resonances with which they are sometimes associated - arise in numerous studies in optics and photonics. In this paper we present an analytical method to study diffracted fields of optically thin gratings that highlights the nonanalyticities associated with the anomalies. Using this approach we can immediately derive diffracted fields for any polarization in a compact notation. While our equations are approximate, they fully respect energy conservation in the electromagnetic field, and describe the large exchanges of energy between incident and diffracted fields that can arise even for thin gratings.Comment: 19 pages, 8 figure

    Generation of photon pairs by spontaneous four-wave mixing in linearly uncoupled resonators

    Full text link
    We present a detailed study of the generation of photon pairs by spontaneous four-wave mixing in a structure composed of two linearly uncoupled resonators, where energy can be transferred from one resonator to another only through a nonlinear interaction. Specifically, we consider the case of two racetrack-shaped resonators connected by a coupler designed to guarantee that the resonance comb of each resonator can be tuned independently, and to allow the nonlinear interaction between modes that belong to different combs. We show that such a coupler can be realized in at least two ways: a directional coupler or a Mach-Zehnder interferometer. For these two scenarios, we derive analytic expressions for the pair generation rate via single-pump spontaneous four-wave mixing, and compare these results with that achievable in a single ring resonator

    Stimulated and spontaneous four-wave mixing in silicon-on-insulator coupled photonic wire nano-cavities

    Full text link
    We report on four-wave mixing in coupled photonic crystal nano-cavities on a silicon-on-insulator platform. Three photonic wire cavities are side-coupled to obtain three modes equally separated in energy. The structure is designed to be self-filtering, and we show that the pump is rejected by almost two orders of magnitudes. We study both the stimulated and the spontaneous four-wave mixing processes: owing to the small modal volume, we find that signal and idler photons are generated with a hundred-fold increase in efficiency as compared to silicon micro-ring resonators

    Strong coupling between excitons in organic semiconductors and Bloch Surface Waves

    Full text link
    We report on the strong coupling between the Bloch surface wave supported by an inorganic multilayer structure and JJ-aggregate excitons in an organic semiconductor. The dispersion curves of the resulting polariton modes are investigated by means of angle-resolved attenuated total reflection as well as photoluminescence experiments. The measured Rabi splitting is 290 meV. These results are in good agreement with those obtained from our theoretical model

    Room temperature Bloch surface wave polaritons

    Full text link
    Polaritons are hybrid light-matter quasi-particles that have gathered a significant attention for their capability to show room temperature and out-of-equilibrium Bose-Einstein condensation. More recently, a novel class of ultrafast optical devices have been realized by using flows of polariton fluids, such as switches, interferometers and logical gates. However, polariton lifetimes and propagation distance are strongly limited by photon losses and accessible in-plane momenta in usual microcavity samples. In this work, we show experimental evidence of the formation of room temperature propagating polariton states arising from the strong coupling between organic excitons and a Bloch surface wave. This result, which was only recently predicted, paves the way for the realization of polariton devices that could allow lossless propagation up to macroscopic distances
    corecore