134 research outputs found
Insulin-Responsive Transcription Factors
The hormone insulin executes its function via binding and activating of the insulin receptor,
a receptor tyrosine kinase that is mainly expressed in skeletal muscle, adipocytes, liver, pancreatic
β-cells, and in some areas of the central nervous system. Stimulation of the insulin receptor activates
intracellular signaling cascades involving the enzymes extracellular signal-regulated protein kinase 1/2 (ERK1/2), phosphatidylinositol 3-kinase, protein kinase B/Akt, and phospholipase Cγ as signal
transducers. Insulin receptor stimulation is correlated with multiple physiological and biochemical
functions, including glucose transport, glucose homeostasis, food intake, proliferation, glycolysis,
and lipogenesis. This review article focuses on the activation of gene transcription as a result of
insulin receptor stimulation. Signal transducers such as protein kinases or the GLUT4-induced influx
of glucose connect insulin receptor stimulation with transcription. We discuss insulin-responsive
transcription factors that respond to insulin receptor activation and generate a transcriptional network
executing the metabolic functions of insulin. Importantly, insulin receptor stimulation induces
transcription of genes encoding essential enzymes of glycolysis and lipogenesis and inhibits genes
encoding essential enzymes of gluconeogenesis. Overall, the activation or inhibition of insulin responsive transcription factors is an essential aspect of orchestrating a wide range of insulin-induced
changes in the biochemistry and physiology of insulin-responsive tissues
Critical Protein–Protein Interactions Determine the Biological Activity of Elk-1, a Master Regulator of Stimulus-Induced Gene Transcription
Elk-1 is a transcription factor that binds together with a dimer of the serum response factor
(SRF) to the serum-response element (SRE), a genetic element that connects cellular stimulation
with gene transcription. Elk-1 plays an important role in the regulation of cellular proliferation
and apoptosis, thymocyte development, glucose homeostasis and brain function. The biological
function of Elk-1 relies essentially on the interaction with other proteins. Elk-1 binds to SRF and
generates a functional ternary complex that is required to activate SRE-mediated gene transcription.
Elk-1 is kept in an inactive state under basal conditions via binding of a SUMO-histone deacetylase
complex. Phosphorylation by extracellular signal-regulated protein kinase, c-Jun N-terminal protein
kinase or p38 upregulates the transcriptional activity of Elk-1, mediated by binding to the mediator
of RNA polymerase II transcription (Mediator) and the transcriptional coactivator p300. Strong
and extended phosphorylation of Elk-1 attenuates Mediator and p300 recruitment and allows the
binding of the mSin3A-histone deacetylase corepressor complex. The subsequent dephosphorylation
of Elk-1, catalyzed by the protein phosphatase calcineurin, facilitates the re-SUMOylation of Elk1, transforming Elk-1 back to a transcriptionally inactive state. Thus, numerous protein–protein
interactions control the activation cycle of Elk-1 and are essential for its biological function
Two to Tango: Co-evolution of Hominid Natural Killer Cell Receptors and MHC
Natural killer (NK) cells have diverse roles in hominid immunity and reproduction. Modulating these functions are the interactions between major histocompatibility complex (MHC) class I molecules that are ligands for two NK cell surface receptor types. Diverse killer cell immunoglobulin-like receptors (KIR) bind specific motifs encoded within the polymorphic MHC class I cell surface glycoproteins, while, in more conserved interactions, CD94:NKG2A receptors recognize MHC-E with bound peptides derived from MHC class I leader sequences. The hominid lineage presents a choreographed co-evolution of KIR with their MHC class I ligands. MHC-A, -B, and -C are present in all great apes with species-specific haplotypic variation in gene content. The Bw4 epitope recognized by lineage II KIR is restricted to MHC-B but also present on some gorilla and human MHC-A. Common to great apes, but rare in humans, are MHC-B possessing a C1 epitope recognized by lineage III KIR. MHC-C arose from duplication of MHC-B and is fixed in all great apes except orangutan, where it exists on approximately 50% of haplotypes and all allotypes are C1-bearing. Recent study showed that gorillas possess yet another intermediate MHC organization compared to humans. Like orangutans, but unlike the Pan-Homo species, duplication of MHC-B occurred. However, MHC-C is fixed, and the MHC-C C2 epitope (absent in orangutans) emerges. The evolution of MHC-C drove expansion of its cognate lineage III KIR. Recently, position −21 of the MHC-B leader sequence has been shown to be critical in determining NK cell educational outcome. In humans, methionine (−21M) results in CD94:NKG2A-focused education whereas threonine (−21T) produces KIR-focused education. This is another dynamic position among hominids. Orangutans have exclusively −21M, consistent with their intermediate stage in lineage III KIR-focused evolution. Gorillas have both −21M and −21T, like humans, but they are unequally encoded by their duplicated B genes. Chimpanzees have near-fixed −21T, indicative of KIR-focused NK education. Harmonious with this observation, chimpanzee KIR exhibit strong binding and, compared to humans, smaller differences between binding levels of activating and inhibitory KIR. Consistent between these MHC-NK cell receptor systems over the course of hominid evolution is the evolution of polymorphism favoring the more novel and dynamic KIR system
Short KIR Haplotypes in Pygmy Chimpanzee (Bonobo) Resemble the Conserved Framework of Diverse Human KIR Haplotypes
Some pygmy chimpanzees (also called Bonobos) give much simpler patterns of hybridization on Southern blotting with killer cell immunoglobulin-like receptor (KIR) cDNA probes than do either humans or common chimpanzees. Characterization of KIRs from pygmy chimpanzees having simple and complex banding patterns identified nine different KIRs, representing seven genes. Five of these genes have orthologs in the common chimpanzee, and three of them (KIRCI, KIR2DL4, and KIR2DL5) also have human orthologs. The remaining two genes are KIR3D paralogous to the human and common chimpanzee major histocompatibility complex A– and/or -B–specific KIRs. Within a pygmy chimpanzee family, KIR haplotypes were defined. Simple patterns on Southern blot were due to inheritance of “short” KIR haplotypes containing only three KIR genes, KIRCI, KIR2DL4, and KIR3D, each of which represents one of the three major KIR lineages. These three genes in pygmy chimpanzees or their corresponding genes in humans and common chimpanzees form the conserved “framework” common to all KIR haplotypes in these species and upon which haplotypic diversity is built. The fecundity and health of individual pygmy chimpanzees who are homozygotes for short KIR haplotypes attest to the viability of short KIR haplotypes, indicating that they can provide minimal, essential KIRs for the natural killer and T cells of the hominoid immune system
Recommended from our members
KIR Variation in Iranians Combines High Haplotype and Allotype Diversity With an Abundance of Functional Inhibitory Receptors.
Natural killer (NK) cells are innate lymphocytes that eliminate infected and transformed cells. They discriminate healthy from diseased tissue through killer cell Ig-like receptor (KIR) recognition of HLA class I ligands. Directly impacting NK cell function, KIR polymorphism associates with infection control and multiple autoimmune and pregnancy syndromes. Here we analyze KIR diversity of 241 individuals from five groups of Iranians. These five populations represent Baloch, Kurd, and Lur, together comprising 15% of the ethnically diverse Iranian population. We identified 159 KIR alleles, including 11 not previously characterized. We also identified 170 centromeric and 94 telomeric haplotypes, and 15 different KIR haplotypes carrying either a deletion or duplication encompassing one or more complete KIR genes. As expected, comparing our data with those representing major worldwide populations revealed the greatest similarity between Iranians and Europeans. Despite this similarity we observed higher frequencies of KIR3DL1*001 in Iran than any other population, and the highest frequency of HLA-B*51, a Bw4-containing allotype that acts as a strong educator of KIR3DL1*001+ NK cells. Compared to Europeans, the Iranians we studied also have a reduced frequency of 3DL1*004, which encodes an allotype that is not expressed at the NK cell surface. Concurrent with the resulting high frequency of strong viable interactions between inhibitory KIR and polymorphic HLA class I, the majority of KIR-A haplotypes characterized do not express a functional activating receptor. By contrast, the most frequent KIR-B haplotype in Iran expresses only one functional inhibitory KIR and the maximum number of activating KIR. This first complete, high-resolution, characterization of the KIR locus of Iranians will form a valuable reference for future clinical and population studies
IPD-MHC 2.0:An improved inter-species database for the study of the major histocompatibility complex
The IPD-MHC Database project (http://www.ebi.ac.uk/ipd/mhc/) collects and expertly curates sequences of the major histocompatibility complex from non-human species and provides the infrastructure and tools to enable accurate analysis. Since the first release of the database in 2003, IPD-MHC has grown and currently hosts a number of specific sections, with more than 7000 alleles from 70 species, including non-human primates, canines, felines, equids, ovids, suids, bovins, salmonids and murids. These sequences are expertly curated and made publicly available through an open access website. The IPD-MHC Database is a key resource in its field, and this has led to an average of 1500 unique visitors and more than 5000 viewed pages per month. As the database has grown in size and complexity, it has created a number of challenges in maintaining and organizing information, particularly the need to standardize nomenclature and taxonomic classification, while incorporating new allele submissions. Here, we describe the latest database release, the IPD-MHC 2.0 and discuss planned developments. This release incorporates sequence updates and new tools that enhance database queries and improve the submission procedure by utilizing common tools that are able to handle the varied requirements of each MHC-group
Bonobos Maintain Immune System Diversity with Three Functional Types of MHC-B
Fast-evolving MHC class I polymorphism serves to diversify NK cell and CD8 T cell responses in individuals, families, and populations. Because only chimpanzee and bonobo have strict orthologs of all HLA class I, their study gives unique perspectives on the human condition. We defined polymorphism of Papa-B, the bonobo ortholog of HLA-B, for six wild bonobo populations. Sequences for Papa-B exon 2 and 3 were determined from the genomic DNA in 255 fecal samples, minimally representing 110 individuals. Twenty-two Papa-B alleles were defined, each encoding a different Papa-B protein. No Papa-B is identical to any chimpanzee Patr-B, human HLA-B, or gorilla Gogo-B. Phylogenetic analysis identified a Glade of MHC-B, defined by residues 45-74 of the alpha(1) domain, which is broadly conserved among bonobo, chimpanzee, and gorilla. Bonobo populations have 3-14 Papa-B allotypes. Three Papa-B are in all populations, and they are each of a different functional type: allotypes having the Bw4 epitope recognized by killer cell Ig-like receptors of NK cells, allotypes having the Cl epitope also recognized by killer cell Ig-like receptors, and allotypes having neither epitope. For population Malebo, these three Papa-B are the only Papa-B allotypes. Although small in number, their sequence divergence is such that the nucleotide diversity (mean proportional distance) of Papa-B in Malebo is greater than in the other populations and is also greater than expected for random combinations of three Papa-B. Overall, Papa-B has substantially less diversity than Patr-B in chimpanzee subspecies and HLA-B in indigenous human populations, consistent with bonobo having experienced narrower population bottlenecks
Defining KIR and HLA Class I Genotypes at Highest Resolution via High-Throughput Sequencing.
The physiological functions of natural killer (NK) cells in human immunity and reproduction depend upon diverse interactions between killer cell immunoglobulin-like receptors (KIRs) and their HLA class I ligands: HLA-A, HLA-B, and HLA-C. The genomic regions containing the KIR and HLA class I genes are unlinked, structurally complex, and highly polymorphic. They are also strongly associated with a wide spectrum of diseases, including infections, autoimmune disorders, cancers, and pregnancy disorders, as well as the efficacy of transplantation and other immunotherapies. To facilitate study of these extraordinary genes, we developed a method that captures, sequences, and analyzes the 13 KIR genes and HLA-A, HLA-B, and HLA-C from genomic DNA. We also devised a bioinformatics pipeline that attributes sequencing reads to specific KIR genes, determines copy number by read depth, and calls high-resolution genotypes for each KIR gene. We validated this method by using DNA from well-characterized cell lines, comparing it to established methods of HLA and KIR genotyping, and determining KIR genotypes from 1000 Genomes sequence data. This identified 116 previously uncharacterized KIR alleles, which were all demonstrated to be authentic by sequencing from source DNA via standard methods. Analysis of just two KIR genes showed that 22% of the 1000 Genomes individuals have a previously uncharacterized allele or a structural variant. The method we describe is suited to the large-scale analyses that are needed for characterizing human populations and defining the precise HLA and KIR factors associated with disease. The methods are applicable to other highly polymorphic genes.This study was supported by U.S. National Institutes of Health grants U01 AI090905, R01 20 GM109030, R01 AI17892 and U19 AI119350. Authors Steven Norberg and Mostafa Ronaghi are 21 employees of Illumina Inc.This is the author accepted manuscript. It is currently under an indefinite embargo pending publication by Elsevier
Conservation, Extensive Heterozygosity, and Convergence of Signaling Potential All Indicate a Critical Role for KIR3DL3 in Higher Primates
Natural killer (NK) cell functions are modulated by polymorphic killer cell immunoglobulin-like receptors (KIR). Among 13 human KIR genes, which vary by presence and copy number, KIR3DL3 is ubiquitously present in every individual across diverse populations. No ligand or function is known for KIR3DL3, but limited knowledge of expression suggests involvement in reproduction, likely during placentation. With 157 human alleles, KIR3DL3 is also highly polymorphic and we show heterozygosity exceeds that of HLA-B in many populations. The external domains of catarrhine primate KIR3DL3 evolved as a conserved lineage distinct from other KIR. Accordingly, and in contrast to other KIR, we show the focus of natural selection does not correspond exclusively to known ligand binding sites. Instead, a strong signal for diversifying selection occurs in the D1 Ig domain at a site involved in receptor aggregation, which we show is polymorphic in humans worldwide, suggesting differential ability for receptor aggregation. Meanwhile in the cytoplasmic tail, the first of two inhibitory tyrosine motifs (ITIM) is conserved, whereas independent genomic events have mutated the second ITIM of KIR3DL3 alleles in all great apes. Together, these findings suggest that KIR3DL3 binds a conserved ligand, and a function requiring both receptor aggregation and inhibitory signal attenuation. In this model KIR3DL3 resembles other NK cell inhibitory receptors having only one ITIM, which interact with bivalent downstream signaling proteins through dimerization. Due to the extensive conservation across species, selection, and other unusual properties, we consider elucidating the ligand and function of KIR3DL3 to be a pressing question
- …